某居民小区有两个相互独立的安全防范系统(简称系统) A 和 B ,系统 A 和在任意时刻发生故障的概率分别为 1 10 和 p .
(Ⅰ)若在任意时刻至少有一个系统不发生故障的概率为 49 50 ,求 p 的值; (Ⅱ)设系统 A 在3次相互独立的检测中不发生故障的次数为随机变量 ξ ,求 ξ 的概率分布列及数学期望 E ξ .
(本小题满分12分)已知函数 (1)求函数的最小正周期; (2)当时,求函数f (x) 的最大值与最小值及相应的值。
.(本小题满分12分) (1)设,求和; (2)设,求的值。
已知函数,其中为大于零的常数. (Ⅰ)若曲线在点(1,)处的切线与直线平行,求的值; (Ⅱ)求函数在区间[1,2]上的最小值.
已知数列满足,, (Ⅰ)计算出、、; (Ⅱ)猜想数列通项公式,并用数学归纳法进行证明.
在直角坐标系中,以O为极点,轴正半轴为极轴建立极坐标系,直线的极坐标方程为.圆O的参数方程为,(为参数,) (1)求圆心的极坐标; (2)当为何值时,圆O上的点到直线的最大距离为3.
试卷网 试题网 古诗词网 作文网 范文网
Copyright ©2020-2025 优题课 youtike.com 版权所有
粤ICP备20024846号