已知
为正实数,
为自然数,抛物线
与
轴正半轴相交于点
,设
为该抛物线在点
处的切线在
轴上的截距.
(1)用
和
表示
;
(2)求对所有
都有
成立的
的最小值;
(3)当
时,比较
与
的大小,并说明理由.
(本小题满分12分)连续抛掷同一颗均匀的骰子,令第i次得到的点数为ai,若存在正整数k,使a1 + a2 +…+ak = 6,则称k为你的幸运数字.(1)求你的幸运数字为4的概率;(2)若k = 1,则你的得分为6分;若k = 2,则你的得分为4分;若k = 3,则你的得分为2分;若抛掷三次还没找到你的幸运数字则记0分.求得分的分布列和数学期望.
(本小题满分12分)已知△ABC的三个内角分别为A、B、C,向量m = (sinB, 1 – cosB)与向量n= (2,0)夹角的余弦值为
.(1)求角B的大小;(2)求sinA + sinC的取值范围.
(本小题满分13分)已知函数(1)讨论函数f (x)的极值情况;(2)设g (x) = ln(x + 1),当x1>x2>0时,试比较f (x1 – x2)与g (x1 – x2)及g (x1) –g (x2)三者的大小;并说明理由.
已知集合,
,
又;
(1)求及
(2),求m的取值范围。
已知命题:方程
有两个不相等的负实根;命题
:方程
无实根;又
或
为真,
且
为假,求实数
的取值范围。