设函数 f n ( x ) = x n + b x + c ( n ∈ N + , b , c ∈ R )
(1)设 n ≥ 2 , b = 1 , c = - 1 ,证明: f n ( x ) 在区间 1 2 , 1 内存在唯一的零点; (2)设 n 为偶数, f ( - 1 ) ≤ 1 , f ( 1 ) ≤ 1 ,求 b + 3 c 的最小值和最大值; (3)设 n = 2 ,若对任意 x 1 , x 2 ∈ - 1 , 1 ,有 f 2 ( x 1 ) - f 2 ( x 2 ) ≤ 4 ,求 b 的取值范围;
已知是定义在上的奇函数,当时,. (1)求; (2)求的解析式; (3)若,求区间.
已知函数. (1)用函数单调性的定义证明:函数在区间上为增函数; (2)若,当时,求实数m的取值范围.
如图所示,已知S是正三角形ABC所在平面外的一点,且SA=SB=SC,SG为△SAB上的高,D、E、F分别是AC、BC、SC的中点,试判断SG与平面DEF的位置关系,并给予证明.
己知圆直线. (1)求与圆相切,且与直线平行的直线的方程; (2)若直线与圆有公共点,且与直线垂直,求直线在轴上的截距的取值范围.
设集合,,. (1)求; (2)若,求实数的取值范围.
试卷网 试题网 古诗词网 作文网 范文网
Copyright ©2020-2025 优题课 youtike.com 版权所有
粤ICP备20024846号