四边形ABCD是平行四边形,AB=3,AD= 5,高DE=2.建立如图所示的平面直角坐标系,其中点A与坐标原点O重合.求BC边所在直线的解析式;
设点F为直线BC与y轴的交点,求经过点B,D,F的抛物线解析式;
判断▱ABCD的对角线的交点G是否在(2)中的抛物线上,并说明理由.
某地为了了解当地推进“阳光体育”运动情况,就“中小学每天在校体育活动时间”的问题随机调查了300名中小学生.根据调查结果绘制成的统计图的一部分如图(其中分组情况见表):
组别 |
范围(小时) |
A |
![]() |
B |
![]() |
C |
![]() |
D |
![]() |
请根据上述信息解答下列问题:
(1)B组的人数是人;
(2)本次调查数据(指体育活动时间)的中位数落在组内;
(3)若某地约有64000名中小学生,请你估计其中达到国家规定体育活动时间(不低于1小时)的人数约有多少?
已知,在平面直角坐标系中,直线:
与直线
:
相交于点
.
(1)求的值;
(2)不解关于的方程组
,请你直接写出它的解。
暴雨过后,某地遭遇山体滑坡,武警总队派出一队武警战士前往抢险. 半小时后,第二队前去支援,平均速度是第一队的1.5倍,结果两队同时到达.已知抢险队的出发地与灾区的距离为90千米,两队所行路线相同,问两队的平均速度分别是多少?
如图,数轴上有三个点A、B、C,它们可以沿着数轴左右移动,请回答:
(1)将点B向右移动三个单位长度后到达点D,点D表示的数是;
(2)移动点A到达点E,使B、C、E三点的其中任意一点为连接另外两点之间线段的中点,请你直接写出所有点A移动的距离和方向;
(3)若A、B、C三个点移动后得到三个互不相等的有理数,它们既可以表示为1,,
的形式,又可以表示为0,
,
的形式,试求
,
的值.
在等腰梯形ABCD中,AD∥BC,∠B=45°,若AD=4cm,AB=8cm,试求出此梯形的周长和面积.