我国云南、贵州等西南地区遇到多年不遇的旱灾.“一方有难,八方支援”为及时灌溉农田,丰收农机公司决定支援上坪村甲、乙、丙三种不同功率柴油发电机共10台(每种至少一台)及配套相同型号抽水机4台、3台、2台,每台抽水机每小时可抽水溉农田1亩.现要求所有柴油发电机及配套抽水机同时工作—小时,灌溉农田32亩。设甲种柴油发电机数量为x台,乙种柴油发电机数量为y台.
①用含x、y的式子表示丙种柴油发电机的数量;
②求出y与x的函数关系式已知甲、乙、丙柴油发电机每台每小时费用分别为130元、120元、100元, 如何安排三种柴油发电机的数量,既能按要求抽水灌溉,同时柴油发电机总费用多少?
如图, 是 的边 上一点, , 交 于 点, .
(1)求证: ;
(2)若 , ,求 的长.
先化简,再求值: ,其中 .
已知抛物线 与 轴相交于 , 两点,与 轴交于点 ,点 是 轴上的动点.
(1)求抛物线的解析式;
(2)如图1,若 ,过点 作 轴的垂线交抛物线于点 ,交直线 于点 .过点 作 于点 ,当 为何值时, ;
(3)如图2,将直线 绕点 顺时针旋转,它恰好经过线段 的中点,然后将它向上平移 个单位长度,得到直线 .
① ;
②当点 关于直线 的对称点 落在抛物线上时,求点 的坐标.
红星公司销售一种成本为40元 件产品,若月销售单价不高于50元 件,一个月可售出5万件;月销售单价每涨价1元,月销售量就减少0.1万件.其中月销售单价不低于成本.设月销售单价为 (单位:元 件),月销售量为 (单位:万件).
(1)直接写出 与 之间的函数关系式,并写出自变量 的取值范围;
(2)当月销售单价是多少元时,月销售利润最大,最大利润是多少万元?
(3)为响应国家“乡村振兴”政策,该公司决定在某月每销售1件产品便向大别山区捐款 元.已知该公司捐款当月的月销售单价不高于70元 件,月销售最大利润是78万元,求 的值.
2021年是中国共产党建党100周年,红旗中学以此为契机,组织本校师生参加红色研学实践活动,现租用甲、乙两种型号的大客车(每种型号至少一辆)送549名学生和11名教师参加此次实践活动,每辆汽车上至少要有一名教师.
甲、乙两种型号的大客车的载客量和租金如表所示:
甲种客车 |
乙种客车 |
|
载客量 (人 辆) |
40 |
55 |
租金 (元 辆) |
500 |
600 |
(1)共需租 辆大客车;
(2)最多可以租用多少辆甲种型号大客车?
(3)有几种租车方案?哪种租车方案最节省钱?