已知函数,设函数
(1)求证:是奇函数;
(2)①求证:;
②结合①的结论求的值;
(3)仿上,设是
上的奇函数,请你写出一个函数
的解析式,并根据第(Ⅱ)问的结论,猜想函数
满足的一般性结论.
已知函数(
,c是实数常数)的图像上的一个最高点
,与该最高点最近的一个最低点是
,
(1)求函数的解析式及其单调增区间;
(2)在△ABC中,角A、B、C所对的边分别为,且
,角A的取值范围是区间M,当
时,试求函数
的取值范围.
已知三棱柱的侧棱长和底面边长均为2,
在底面ABC内的射影O为底面△ABC的中心,如图所示:
(1)联结,求异面直线
与
所成角的大小;
(2)联结、
,求四棱锥
的体积.
已知数列,满足
,
,
(1)已知,求数列
所满足的通项公式;
(2)求数列的通项公式;
(3)己知,设
=
,常数
,若数列
是等差数列,记
,求
.
已知函数(其中
是实数常数,
)
(1)若,函数
的图像关于点(—1,3)成中心对称,求
的值;
(2)若函数满足条件(1),且对任意
,总有
,求
的取值范围;
(3)若b=0,函数是奇函数,
,
,且对任意
时,不等式
恒成立,求负实数
的取值范围.
我国西部某省4A级风景区内住着一个少数民族村,该村投资了800万元修复和加强民俗文化基础设施,据调查,修复好村民俗文化基础设施后,任何一个月内(每月按30天计算)每天的旅游人数与第x天近似地满足
(千人),且参观民俗文化村的游客人均消费
近似地满足
(元).
(1)求该村的第x天的旅游收入(单位千元,1≤x≤30,
)的函数关系;
(2)若以最低日收入的20%作为每一天的计量依据,并以纯收入的5%的税率收回投资成本,试问该村在两年内能否收回全部投资成本?