游客
题文

如图,在平面直角坐标系xoy中,抛物线yx2x-10与x轴的交点为A,与y轴的交点为点B,过点Bx轴的平行线BC,交抛物线于点C,连结AC.现有两动点PQ分别从OC两点同时出发,点P以每秒4个单位的速度沿OA向终点A移动,点Q以每秒1个单位的速度沿CB向点B移动,点P停止运动时,点Q也同时停止运动.线段OCPQ相交于点D,过点DDEOA,交CA于点E,射线QEx轴于点F.设动点PQ移动的时间为t(单位:秒)

(1)求A,C两点的坐标和抛物线的顶点M坐标;
(2)当t为何值时,四边形PQCA为平行四边形?请写出计算过程;
(3)当0<t<4.5时,△PQF的面积是否总为定值?若是,求出此定值;若不是,请说明理由;
(4)当t为何值时,△PQF为等腰三角形?请写出解答过程.

科目 数学   题型 解答题   难度 较难
知识点: 二次函数在给定区间上的最值
登录免费查看答案和解析
相关试题

如图1,平面直角坐标系中,抛物线轴交于AB两点,点CAB的中点,CDABCD=AB.直线BE轴平行,点F是射线BE上的一个动点,连接ADAFDF.

(1)若点F的坐标为(),AF=.
①求此抛物线的解析式;
②点P是此抛物线上一个动点,点Q在此抛物线的对称轴上,以点AFPQ为顶点构成的四边形是平行四边形,请直接写出点Q的坐标;
(2)若,且AB的长为,其中.如图2,当∠DAF=45时,求的值和∠DFA的正切值.

以平面上一点O为直角顶点,分别画出两个直角三角形,记作△AOB和△COD,其中∠ABO=∠DCO=30.

图1 图2 图3
(1)点EFM分别是ACCDDB的中点,连接FMEM
①如图1,当点DC分别在AOBO的延长线上时,=_______;
②如图2,将图1中的△AOB绕点O沿顺时针方向旋转角(),其他条件不变,判断的值是否发生变化,并对你的结论进行证明;
(2)如图3,若BO=,点N在线段OD上,且NO=2.点P是线段AB上的一个动点,在将△AOB绕点O旋转的过程中,线段PN长度的最小值为_______,最大值为_______.

已知抛物线经过点().
(1)求的值;
(2)若此抛物线的顶点为(),用含的式子分别表示,并求之间的函数关系式;
(3)若一次函数,且对于任意的实数,都有,直接写出的取值范围.

阅读下面的材料:
小明在学习中遇到这样一个问题:若1≤xm,求二次函数的最大值.他画图研究后发现,时的函数值相等,于是他认为需要对进行分类讨论.
他的解答过程如下:
∵二次函数的对称轴为直线
∴由对称性可知,时的函数值相等.
∴若1≤m<5,则时,的最大值为2;
m≥5,则时,的最大值为

请你参考小明的思路,解答下列问题:
(1)当x≤4时,二次函数的最大值为_______;
(2)若px≤2,求二次函数的最大值;
(3)若txt+2时,二次函数的最大值为31,则的值为_______.

平面直角坐标系中,原点O是正三角形ABC外接圆的圆心,点A轴的正半轴上,△ABC的边长为6.以原点O为旋转中心将△ABC沿逆时针方向旋转角,得到△,点分别为点ABC的对应点.

(1)当=60时,
①请在图1中画出△
②若AB分别与交于点DE,则DE的长为_______;
(2)如图2,当AB时,分别与ABBC交于点FG,则点的坐标为 _____,△FBG的周长为_____,△ABC与△重叠部分的面积为_______.

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号