游客
题文

如图1, E是等腰Rt△ABC边AC上的一个动点(点E与A、C不重合),以CE为一边在Rt△ABC作等腰Rt△CDE,连结AD, BE.我们探究下列图中线段AD,、线段BE 的长度关系及所在直线的位置关系:

(1)①猜想如图1中线段BG、线段DE的长度关系及所在直线的位置关系;②将图1中的等腰Rt△CDE绕着点C按顺时针方向旋转任意角度,得到如图2、如图3情形.请你通过观察、测量等方法判断①中得到的结论是否仍然成立,并选取图2证明你的判断.

(2)将原题中等腰直角三角形改为直角三角形(如图4—6),且AC=a,BC=b,CD=ka, CE="kb" (ab,k0),第(1)题①中得到的结论哪些成立,哪些不成立?若成立,以图5为例简要说明理由.
(3)在第(2)题图5中,连结BD、AE,且a=4,b=3,k=,求BD2+AE2的值.

科目 数学   题型 解答题   难度 中等
知识点: 对称式和轮换对称式
登录免费查看答案和解析
相关试题

已知:关于x的方程x2+4x+a=0有两个实数根x1、x2,且2x1-x2=7,求实数a的值.

化简:(1+)÷

计算:

如图,在直角坐标系中,矩形的顶点与坐标原点重合,顶点在坐标轴上,.动点从点出发,以的速度沿轴匀速向点运动,到达点即停止.设点运动的时间为

(1)过点作对角线的垂线,垂足为点.求的长与时间的函数关系式,并写出自变量的取值范围;
(2)在点运动过程中,当点关于直线的对称点恰好落在对角线上时,求此时直线的函数解析式;
(3)探索:以三点为顶点的的面积能否达到矩形面积的?请说明理由.

如图1,点将线段分成两部分,如果,那么称点为线段的黄金分割点.
某研究小组在进行课题学习时,由黄金分割点联想到“黄金分割线”,类似地给出“黄金分割线”的定义:直线将一个面积为的图形分成两部分,这两部分的面积分别为,如果,那么称直线为该图形的黄金分割线.

(1)研究小组猜想:在中,若点边上的黄金分割点(如图2),则直线的黄金分割线.你认为对吗?为什么?
(2)请你说明:三角形的中线是否也是该三角形的黄金分割线?
(3)研究小组在进一步探究中发现:过点任作一条直线交于点,再过点作直线,交于点,连接(如图3),则直线也是的黄金分割线.
请你说明理由.
(4)如图4,点的边的黄金分割点,过点,交于点,显然直线的黄金分割线.请你画一条的黄金分割线,使它不经过各边黄金分割点.

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号