平安加气站某日的储气量为10000立方米.假设加气过程中每把加气枪均以每小时200立方米的速度为汽车加气.设加气站的储气量为y(立方米),加气总时间为x(小时)(加气期间关闭加气枪的时间忽略不计).从7︰00开始,加气站加气枪的使用数量如下表所示:
时间段 |
7︰00—7︰30] |
7︰30—8︰00 |
8︰00以后 |
加气枪使用︰数量 (单位:把) |
3 |
5 |
6 |
分别求出7︰00—7︰30及8︰00之后加气站的储气量y(立方米)与时间x(小时)的函数关系式.
若每辆车的加气量均为20立方米,请通过计算说明前50辆车能否在当天8︰00之前加完气.
计算或化简
(1)()-2-(π-3.14)0+2-1+|
|
(2).
如图,抛物线y =-x2+2x+3与x轴交于点A、B,与y轴交于点C,点D是抛物线的顶点,连接BC、BD.
(1)点D的坐标是 ;
(2)在抛物线的对称轴上求一点M,使点M到点A的距离与到点C的距离之和最小,并求出此时点M的坐标.
(3)若点P在x轴上且位于点B右侧,且点P是线段AQ的中点,连接QD,且∠BDQ=45°,求点P坐标(请利用备用图解决问题).
如图所示,在△ABC中,BA=BC=20cm,AC=30cm,点P从点A出发,沿AB以4cm/s的速度向点B运动,同时点Q从C点出发,沿CA以3cm/s的速度向点A运动,设运动时间为x秒.
(1)当x为何值时,BP=CQ;
(2)以A、P、Q为顶点的三角形能否与以C、Q、B为顶点的三角形相似?若能,求出x的值;若不能,请说明理由.
如图,已知AB为⊙O的直径,PA与⊙O相切于点A,线段OP与弦AC垂直并相交于点D,OP与⊙O相交于点E,连接BC.
(1)求证:△PAD∽△ABC;
(2)若PA=10,AD=6,求AB的长.
如图,某校数学兴趣小组的同学欲测量祁阳县文昌古塔BD的高度,他们先在A处测得古塔顶端点D的仰角为45°,再沿着BA的方向后退12米至C处,测得古塔顶端点D的仰角为30°.求该古塔BD的高度(结果保留根号).