如图,将□OABC放置在平面直角坐标系xOy内,已知AB边所在直线的解析为:y = − x + 4.点C的坐标是( ▲ , ▲ )
若将□OABC绕点O逆时针旋转90°得OBDE,BD交OC于点P,求△OBP的面积;
在(2)的情形下,若再将四边形OBDE沿y轴正方向平移,设平移的距离为x(0≤x≤8),与□OABC重叠部分面积为S,试写出S关于x的函数关系式,并求出S的最大值.
如图,⊙O的直径AB为10cm,弦AC为6cm,∠ACB的平分线交⊙O于D,求BC,AD,BD的长.
如图,在Rt△ABC中,∠ACB=90°,∠B =60°,BC=2.点O是AC的中点,过点O的直线l从与AC重合的位置开始,绕点O作逆时针旋转,交AB边于点D.过点C作CE∥AB交直线l于点E,设直线l的旋转角为α.
(1)①当α=________度时,四边形EDBC是等腰梯形,此时AD的长为_________;
②当α=________度时,四边形EDBC是直角梯形,此时AD的长为_________;
(2)当α=90°时,判断四边形EDBC是否为菱形,并说明理由.
要对一块长60m、宽40m的矩形荒地ABCD进行绿化和硬化.
(1)设计方案如图①所示,矩形P、Q为两块绿地,其余为硬化路面,P、Q两块绿地周围的硬化路面宽都相等,并使两块绿地面积的和为矩形ABCD面积的,求P、Q两块绿地周围的硬化路面的宽.
(2)某同学有如下设想:设计绿化区域为相外切的两等圆,圆心分别为O1和O2,且O1到AB,BC,AD的距离与O2到CD,BC,AD的距离都相等,其余为硬化地面,如图②所示,这个设想是否成立?若成立,求出圆的半径;若不成立,说明理由.
解方程:x2+2x―4=0.
解方程:(1)x2+x―12=0;