游客
题文

要对一块长60m、宽40m的矩形荒地ABCD进行绿化和硬化.

(1)设计方案如图①所示,矩形P、Q为两块绿地,其余为硬化路面,P、Q两块绿地周围的硬化路面宽都相等,并使两块绿地面积的和为矩形ABCD面积的,求P、Q两块绿地周围的硬化路面的宽.
(2)某同学有如下设想:设计绿化区域为相外切的两等圆,圆心分别为O1和O2,且O1到AB,BC,AD的距离与O2到CD,BC,AD的距离都相等,其余为硬化地面,如图②所示,这个设想是否成立?若成立,求出圆的半径;若不成立,说明理由.

科目 数学   题型 解答题   难度 较易
知识点: 圆幂定理
登录免费查看答案和解析
相关试题

如图①,要设计一幅宽20cm、长30cm的矩形图案,其中有两横两竖的彩条,横、竖彩条的宽度比为2:3,如果要使所有彩条所占面积为原矩形图案面积的三分之一,应如何设计每个彩条的宽度?
分析:由横、竖彩条的宽度比为2:3,可设每个横彩条的宽为2χ,则每个竖彩条的宽为3χ.将横、竖彩条分别集中,则原问题转化为如图②的情况,得到矩形ABCD.
结合以上分析完成填空:
如图②,用含有χ的代数式表示:AB=cm,AD=cm.列出方程并完成本题解答。

已知:如图,AB是⊙O的直径,AC是⊙O的弦,过点C作⊙O的切线与AB的延长线交于点D。若∠CAB=30°,AB=30,求BD的长。

如图,在△ABC中,AB=AC,E、F分别为AB,AC上的点(E、F不与A重合),且EF∥BC.将△AEF沿着直线EF向下翻折,得到△A'EF,再展平.

(1)请证明四边形AE A'F为菱形;
(2)当等腰△ABC满足什么条件时,按上述方法操作,四边形AE A'F将变成正方形?(只写结果,不作证明)

解方程:(1)2x2-3x-1=0;(2)8y2-3=4y(配方法)

计算:(1);(2)

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号