设是直角坐标系中,x轴、y轴正方向上的单位向量,设
(1)若(,求
.
(2)若时,求
的夹角
的余弦值.
(3)是否存在实数,使
,若存在求出
的值,不存在说明理由.
某中学校本课程共开设了共
门选修课,每个学生必须且只能选修
门选修课,现有该校的甲、乙、丙
名学生.
(Ⅰ)求这名学生选修课所有选法的总数;
(Ⅱ)求恰有门选修课没有被这
名学生选择的概率;
(Ⅲ)求选修课被这
名学生选择的人数
的分布列和数学期望.
如图,四棱锥中,底面ABCD为菱形,
,Q是AD的中点.
(Ⅰ)若,求证:平面PQB
平面PAD;
(Ⅱ)若平面APD平面ABCD,且
,点M在线段PC上,试确定点M的位置,使二面角
的大小为
,并求出
的值.
已知,其中
,
.
(1)求的周期和单调递减区间;
(2)在△ABC中,角A,B,C的对边分别为,
,
,求边长
和
的值(
).
(本小题满分12分)已知函数满足
,对任意
都有
,且
.
(1)求函数的解析式;
(2)是否存在实数,使函数
在
上为减函数?若存在,求出实数
的取值范围;若不存在,说明理由.
(本小题满分12分)过点的圆C与直线
相切于点A(4,0).
(1)求圆C的方程;
(2)已知点的坐标为
,设
分别是直线
和圆
上的动点,求
的最小值.
(3)在圆C上是否存在两点关于直线
对称,且以
为直径的圆经过原点?若存在,写出直线
的方程;若不存在,说明理由.