如图,在矩形ABCD中,点O在对角线AC上,以OA长为半径的与AD,AC分别交于点E,F,∠ACB="∠DCE" .
请判断直线CE与
的位置关系,并证明你的结论;
若 DE:EC=1:
,
,求⊙O的半径.
2021年7月,中共中央办公厅,国务院办公厅印发了《关于进一步减轻义务教育阶段学生作业负担和校外培训负担的意见》.某中学为了切实减轻学生作业负担,落实课后服务相关要求,开设了书法、摄影、篮球、足球、乒乓球五项课后服务活动,为了解学生的个性化需求,学校随机抽取了部分学生进行问卷调查,并将调查结果绘制成如图所示的扇形统计图和条形统计图,请你根据给出的信息解答下列问题:
(1)求 的值并把条形统计图补充完整;
(2)若该校有 名学生,试估计该校参加“书法”活动的学生有多少人?
(3)结合调查信息,请你给该校课后服务活动项目开设方面提出一条合理化的建议.
如图,点 在 上, .求证: .
在平面直角坐标系内有三点 .
(1)求过其中两点的直线的函数表达式(选一种情形作答);
(2)判断 三点是否在同一直线上,并说明理由.
如图1,平面直角坐标系 中,抛物线 与 轴分别交于点 和点 ,与 轴交于点 ,对称轴为直线 ,且 , 为抛物线上一动点.
(1)直接写出抛物线的解析式;
(2)如图2,连接 ,当点 在直线 上方时,求四边形 面积的最大值,并求出此时 点的坐标;
(3)设M为抛物线对称轴上一动点,当 运动时,在坐标轴上是否存在点 ,使四边形 为矩形?若存在,直接写出点 及其对应点 的坐标;若不存在,请说明理由.
《几何原本》是古希腊数学家欧几里得的一部不朽著作,是数学发展史的一个里程碑.在该书的第2卷“几何与代数”部分,记载了很多利用几何图形来论证的代数结论,利用几何给人以强烈印象将抽象的逻辑规律体现在具体的图形之中.
(1)我们在学习许多代数公式时,可以用几何图形来推理,观察下列图形,找出可以推出的代数公式,(下面各图形均满足推导各公式的条件,只需填写对应公式的序号)
公式①:
公式②:
公式③:
公式④:
图1对应公式_____,图2对应公式_____,图3对应公式_____,图4对应公式_____.
(2)《几何原本》中记载了一种利用几何图形证明平方差公式 的方法,如图5,请写出证明过程;(已知图中各四边形均为矩形)
(3)如图6,在等腰直角三角形 中, , 为 的中点, 为边 上任意一点(不与端点重合),过点 作 于点 ,作 于点 ,过点 作 交 的延长线于点 .记 与 的面积之和为 , 与 的面积之和为 .
①若 为边 的中点,则 的值为_____;
②若 不为边 的中点时,试问①中的结论是否仍成立?若成立,写出证明过程;若不成立,请说明理由.