(本小题满分12分) 在直角坐标系中,以坐标原点
为圆心的圆与直线:
相切.
(1)求圆的方程;
(2)若圆上有两点
关于直线
对称,且
,求直线MN的方程;
(3)圆与x轴相交于A、B两点,圆内的动点P使|PA|、|PO|、|PB|成等比数列,求
的取值范围.
求证函数f(x)=在区间(1,+∞)上是减函数.
已知函数f(x)=ax+(a>1).
(1)证明:函数f(x)在(-1,+∞)上为增函数.
(2)用反证法证明方程f(x)=0没有负数根.
已知函数y=f(x)=(a,b,c∈R,a>0,b>0)是奇函数,当x>0时,f(x)有最小值2,其中b∈N且f(1)<
.
(1)试求函数f(x)的解析式;
(2)问函数f(x)图象上是否存在关于点(1,0)对称的两点,若存在,求出点的坐标;若不存在,说明理由.
定义在(-∞,4]上的减函数f(x)满足f(m-sinx)≤f(-
+cos2x)对任意x∈R都成立,求实数m的取值范围.
已知f(x)=(a∈R)是R上的奇函数,
(1)求a的值;
(2)求f(x)的反函数f-1(x);
(3)对任意给定的k∈R+,解不等式f-1(x)>lg.