已知椭圆的中心为原点 O ,长轴在 x 轴上,上顶点为 A ,左、右焦点分别为 F 1 , F 2 ,线段 O F 1 , O F 2 的中点分别为 B 1 , B 2 ,且 △ A B 1 B 2 是面积为4的直角三角形.
(Ⅰ)求该椭圆的离心率和标准方程; (Ⅱ)过 B 1 作直线交椭圆于 P , Q , P B 2 ⊥ Q B 2 ,求 △ P B 2 Q 的面积.
已知函数y=xlnx+1. (1)求这个函数的导数; (2)求这个函数的图象在点x=1处的切线方程.
设函数的图像为曲线 (1)若函数不是R上的单调函数,求实数的范围. (2)若过曲线外的点作曲线的切线恰有两条, (1)求的关系式. (2)若存在,使成立,求的取值范围.
给出一个正五棱柱. (1)用3种颜色给其10个顶点染色,要求各侧棱的两个端点不同色,有几种染色方案? (2)以其10个顶点为顶点的四面体共有几个?
对于数列:,实常数 (1)求,并猜想(2)证明你的猜想.
已知函数. (1)求在点处的切线方程; (2)求函数在上的最大值.
试卷网 试题网 古诗词网 作文网 范文网
Copyright ©2020-2025 优题课 youtike.com 版权所有
粤ICP备20024846号