已知椭圆的中心为原点 O ,长轴在 x 轴上,上顶点为 A ,左、右焦点分别为 F 1 , F 2 ,线段 O F 1 , O F 2 的中点分别为 B 1 , B 2 ,且 △ A B 1 B 2 是面积为4的直角三角形.
(Ⅰ)求该椭圆的离心率和标准方程; (Ⅱ)过 B 1 作直线交椭圆于 P , Q , P B 2 ⊥ Q B 2 ,求 △ P B 2 Q 的面积.
已知A、B、C是的三内角,向量,,且. (1)求角A; (2)若,求.
已知函数 (1)求函数的最小正周期及在区间上的最大值和最小值; (2)若,求的值.
是两个不共线的非零向量,且. (1)记当实数t为何值时,为钝角? (2)令,求的值域及单调递减区间.
集合. (1)当时,求; (2)若是只有一个元素的集合,求实数的取值范围.
已知,函数. (I)证明:函数在上单调递增; (Ⅱ)求函数的零点.
试卷网 试题网 古诗词网 作文网 范文网
Copyright ©2020-2025 优题课 youtike.com 版权所有
粤ICP备20024846号