为响应市教育局倡导的“阳光体育运动”的号召,全校学生积极参与体育运动.为了进一步了解学校九年级学生的身体素质情况,体育老师在九年级800名学生中随机抽取50位学生进行一分钟跳绳次数测试,以测试数据为样本,绘制出部分频数分布表和部分频数分布直方图,如下所示:
请结合图表完成下列问题:
(1)表中的 ;
(2)请把频数分布直方图补充完整;
(3)这个样本数据的中位数落在第 组;
(4) 若九年级学生一分钟跳绳次数()达标要求是:
为不合格;
为合格;为良;
为优.根据以上信息,请你估算学校九年级同学一分钟跳绳次数为优的人数为 .
某商场试销一种成本为每件60元的服装,规定试销期间销售单价不低于成本单价,且获利不得高于45%,经试销发现,销售量y件与销售单价x元符合一次函数y=kx+b,且x=65时,y="55" 当x=75时,y=45.
(1)求一次函数y=kx+b的表达式;
(2)若该商场获得利润为W元,试写出利润W元与销售单价x之间的关系式;销售单间定为多少元时,商场可获得最大利润,最大利润是多少元?
(3)若该商场获得利润不低于500元,试确定销售单价x的范围.
如图:AB是⊙O的直径,以OA为直径的⊙O1与⊙O的弦AC相交于D,DE⊥OC,垂足为E.
(1)求证:AD=DC;
(2)求证:DE是⊙O1的切线;
(3)如果OE=EC,请判断四边形O1OED是什么四边形,并证明你的结论.
如图,一个圆锥的高为cm,侧面展开图是半圆.
求:(1)圆锥的母线长与底面半径之比;
(2)求∠BAC的度数;
(3)圆锥的侧面积.
某商场购进一种单价为40元的篮球,如果以单价50元售出,那么每月可售出500个,根据销售经验,销售单价每提高1元,销售量相应减少10个.
(1)设销售单价提高x元(x为正整数),写出每月销售量y(个)与x(元)之间的函数关系式;
(2)假设这种篮球每月的销售利润为w元,试写出w与x之间的函数关系式,并通过配方讨论,当销售单价定为多少元时,每月销售这种篮球的利润最大,最大利润为多少元?
已知是⊙
的直径,
是⊙
的切线,
是切点,
与⊙
交于点
.
(1)如图①,若,
,求
的长(结果保留根号);
(2)如图②,若为
的中点,求证:直线
是⊙
的切线.