如图,一个小球从M处投入,通过管道自上而下落A或B或C。已知小球从每个叉口落入左右两个 管道的可能性是相等的.某商家按上述投球方式进行促销活动,若投入的小球落到A,B,C,则分别设为l,
2,3等奖.(I)已知获得l,2,3等奖的折扣率分别为50%,70%,90%.记随变量为获得k(k=1,2,3)等奖的折扣率,求随机变量
的分布列及期望
;(II)若有3人次(投入l球为l人次)参加促销活动,记随机变量
为获得1等奖或2等奖的人次,求
.
设函数
.
(Ⅰ)求
的单调区间和极值;
(Ⅱ)是否存在实数
,使得关于
的不等式
的解集为(0,+
)?若存在,求
的取值范围;若不存在,试说明理由.
在数列
,
中,
,且
成等差数列,
成等比数列(
)
(Ⅰ)求
及
,由此猜测
,
的通项公式,并证明你的结论;
(Ⅱ)证明:
.
在直角坐标系
中,点
到两点
的距离之和等于4,设点
的轨迹为
,直线
与
交于
两点.
(Ⅰ)写出
的方程;
(Ⅱ)若
,求
的值;
(Ⅲ)若点
在第一象限,证明:当
时,恒有
.
如图,在棱长为1的正方体
中,
,截面
,截面
.
(Ⅰ)证明:平面
和平面
互相垂直;
(Ⅱ)证明:截面
和截面
面积之和是定值,
并求出这个值;
(Ⅲ)若
与平面
所成的角为
,求
与平
面
所成角的正弦值.
某批发市场对某种商品的周销售量(单位:吨)进行统计,最近100周的统计结果如下表所示:
(Ⅰ)根据上面统计结果,求周销售量分别为2吨,3吨和4吨的频率;
(Ⅱ)已知每吨该商品的销售利润为2千元,
表示该种商品两周销售利润的和(单位:千元).若以上述频率作为概率,且各周的销售量相互独立,求
的分布列和数学期望.