如图,正方形ABCD的边长为2cm,在对称中心O处有一钉子.动点P、Q同时从点A出发,点P沿A→B→C方向以每秒2cm的速度运动,到点C停止,点Q沿A→D方向以每秒1cm的速度运动,到点D停止.P、Q两点用一条可伸缩的细橡皮筋联结,设x秒后橡皮筋扫过的面积为ycm2.当0≤x≤1时,求y与x之间的函数关系式;
当橡皮筋刚好触及钉子时,求x值
当1≤x≤2时,求y与x之间的函数关系式,并写出橡皮筋从触及钉子到运动停止时∠POQ的变化范围;
当0≤x≤2时,请在给出的直角坐标系中画出y与x之间的函数图象.
, 两地间有一段笔直的高速铁路,长度为 .某时发生的地震对地面上以点 为圆心, 为半径的圆形区域内的建筑物有影响.分别从 , 两地处测得点 的方位角如图所示, , .高速铁路是否会受到地震的影响?请通过计算说明理由.
先化简,再求值: ,其中 .
计算: .
已知某厂以 小时 千克的速度匀速生产某种产品(生产条件要求 ,且每小时可获得利润 元.
(1)某人将每小时获得的利润设为 元,发现 时, ,所以得出结论:每小时获得的利润,最少是180元,他是依据什么得出该结论的,用你所学数学知识帮他进行解析说明;
(2)若以生产该产品2小时获得利润1800元的速度进行生产,则1天(按8小时计算)可生产该产品多少千克;
(3)要使生产680千克该产品获得的利润最大,问:该厂应该选取何种生产速度?并求此最大利润.
某同学在学习了正多边形和圆之后,对正五边形的边及相关线段进行研究,发现多处出现著名的黄金分割比 .如图,圆内接正五边形 ,圆心为 , 与 交于点 , 、 与 分别交于点 、 .根据圆与正五边形的对称性,只对部分图形进行研究.(其它可同理得出)
(1)求证: 是等腰三角形且底角等于 ,并直接说出 的形状;
(2)求证: ,且其比值 ;
(3)由对称性知 ,由(1)(2)可知 也是一个黄金分割数,据此求 的值.