(本小题满分12分)
已知函数.
(1)若函数的图象在
处的切线斜率为
,求实数
的值;
(2)在(1)的条件下,求函数的单调区间;
(3)若函数在
上是减函数,求实数
的取值范围.
(本小题满分12分)合肥一中生活区内建有一块矩形休闲区域ABCD,AB=100米,BC=50米,为了便于同学们平时休闲散步,学校后勤部门将在这块区域内铺设三条小路OE、EF和OF,考虑到学校整体规划,要求O是AB的中点,点E在边BC上,点F在边AD上,且OE⊥OF,如图所示.
(1)设∠BOE=,试将△OEF的周长
表示成
的函数关系式,并求出此函数的定义域;
(2)经核算,三条路每米铺设费用均为800元,试问如何设计才能使铺路的总费用最低?并求出最低总费用.
(本小题满分12分)利用已学知识证明:
(1)。
(2)已知△ABC的外接圆的半径为2,内角A,B,C满足,求△ABC的面积。
(本小题满分l2分)已知{an}的前n项和(其中
),且Sn的最大值为9。
(1)确定常数k的值,并求数列{an}的通项公式;
(2)求数列的前n项和
。
(本小题满分12分)已知函数在区间[2,3]上有最大值4和最小值1.设
.
(1)求a、b的值;
(2)若不等式上有解,求实数k的取值范围。
已知函数
(Ⅰ)当时,求使
成立的
的值;
(Ⅱ)当,求函数
在
上的最大值;
(Ⅲ)对于给定的正数,有一个最大的正数
,使
时,都有
,试求出这个正数
,并求它的取值范围.