如图,在平面直角坐标系 x O y 中,椭圆 x 2 a 2 + y 2 b 2 = 1 ( a > b > 0 ) 的左、右焦点分别为 F 1 ( - c , 0 ) , F 2 ( c , 0 ) .已知 ( 1 , e ) 和 ( e , 3 2 ) 都在椭圆上,其中 e 为椭圆的离心率.
(1)求椭圆的方程; (2)设 A , B 是椭圆上位于 x 轴上方的两点,且直线 A F 1 与直线 B F 2 平行, A F 2 与 B F 1 交于点 P . (i)若 A F 1 = B F 2 = 6 2 ,求直线 A F 1 的斜率; (ii)求证: P F 1 + P F 2 是定值.
设正四棱锥的侧面积为,若. (1)求四棱锥的体积; (2)求直线与平面所成角的大小.
已知函数. (1)求的单调区间; (2)当时,判断和的大小,并说明理由; (3)求证:当时,关于的方程:在区间上总有两个不同的解.
已知椭圆的中心在原点,焦点在轴上.若椭圆上的点到焦点、的距离之和等于4. (1)写出椭圆的方程和焦点坐标. (2)过点的直线与椭圆交于两点、,当的面积取得最大值时,求直线的方程.
设,若,,. (1)若,求的取值范围; (2)判断方程在内实根的个数.
已知函数. (1)若,求的单调区间及的最小值; (2)若,求的单调区间; (3)试比较与的大小,并证明你的结论.
试卷网 试题网 古诗词网 作文网 范文网
Copyright ©2020-2025 优题课 youtike.com 版权所有
粤ICP备20024846号