如图,在平面直角坐标系 中,椭圆 的左、右焦点分别为 .已知 和 都在椭圆上,其中 为椭圆的离心率.
(1)求椭圆的方程;
(2)设
是椭圆上位于
轴上方的两点,且直线
与直线
平行,
与
交于点
.
(i)若
,求直线
的斜率;
(ii)求证:
是定值.
已知椭圆:与X轴、y轴的正半轴分别交于A,B两点,原点O到直线AB的距离为
,该椭圆的离心率为
(I)求椭圆的方程;
(II)是否存在过点的直线I与椭圆交于M,N两个不同的点,且对l外任意一点Q,有
成立?若存在,求出l的方程;若不存在,说明理由.
某幼儿园为训练孩子的数字运算能力,在一个盒子里装有标号为1,2,3,4,5的卡片各2张,让孩子从盒子里任取3张卡片,按卡片上最大数字的9倍计分,每张卡片被取出的可能性都相等,用X表示取出的3张卡片上的最大数字.
(I)求取出的3张卡片上的数字互不相同的概率;
(II)求随机变量x的分布列及数学期望;
(III)若孩子取出的卡片的计分超过30分,就得到奖励,求孩子得到奖励的概率.
如图,已知直角梯形ACDE所在的平面垂直于平面ABC,,
(I )在直线BC上是否存在一点P,使得DP//平面EAB?请证明你的结论;
(II)求平面EBD与平面ABC所成的锐二面角的余弦值.
已知数列的前n项和为
.
(I)求数列的通项公式;
(II)设,求数列
的前n项和Tn
设函数.
(1)求曲线在点
处的切线方程;(2)求函数
的单调区间;
(3)若函数在区间
内单调递增,求
的取值范围.