(本小题满分12分)函数f(x)=ax2-2(a-1)x-2lnx ,a>0
(1)求函数f(x)的单调区间;
(2)对于函数图像上的不同两点A(x1,y1),B(x2,y2),如果在函数图像上存在点P(x0,y0)(其中x0在x1与x2之间),使得点P处的切线l平行于直线AB,则称AB存在“伴随切线”,当x0= 时,又称AB存在“中值伴随切线”.试问:在函数f(x)的图像上是否存在不同两点A,B,使得AB存在“中值伴随切线”?若存在,求出A,B的坐标;若不存在,说明理由
(本小题满分12分)
某食品厂定期购买面粉,已知该厂每天需要面粉6吨,每吨面粉的价格为1800元,面粉的保管等其它费用为平均每吨每天3元,购面粉每次需支付运费900元.求该厂多少天购买一次面粉,才能使平均每天所支付的总费用最少?
在椭圆上找一点,使这一点到直线
的距离的最小值。
求直线和直线
的交点
的坐标,及点
与的距离。
已知点是圆
上的动点,
(1)求的取值范围;(2)若
恒成立,求实数
的取值范围。
某厂工人在2006年里有1个季度完成生产任务,则得奖金300元;如果有2个季度完成生产任务,则可得奖金750元;如果有3个季度完成生产任务,则可得奖金1260元;如果有4个季度完成生产任务,可得奖金1800元;如果工人四个季度都未完成任务,则没有奖金,假设某工人每季度完成任务与否是等可能的,求他在2006年一年里所得奖金的分布列.