(本小题满分12分)函数f(x)=ax2-2(a-1)x-2lnx ,a>0
(1)求函数f(x)的单调区间;
(2)对于函数图像上的不同两点A(x1,y1),B(x2,y2),如果在函数图像上存在点P(x0,y0)(其中x0在x1与x2之间),使得点P处的切线l平行于直线AB,则称AB存在“伴随切线”,当x0= 时,又称AB存在“中值伴随切线”.试问:在函数f(x)的图像上是否存在不同两点A,B,使得AB存在“中值伴随切线”?若存在,求出A,B的坐标;若不存在,说明理由
(本小题满分10分)选修4—5:不等式选讲
已知函数.
(Ⅰ)求不等式的解集;
(Ⅱ)若关于的不等式
恒成立,求实数
的取值范围.
(本小题满分10分)选修4—4:坐标系与参数方程
在直角坐标系中,半圆C的参数方程为
(
为参数,
),以O为极点,x轴的非负半轴为极轴建立极坐标系.
(Ⅰ)求C的极坐标方程;
(Ⅱ)直线的极坐标方程是
,射线OM:
与半圆C的交点为O、P,与直线
的交点为Q,求线段PQ的长.
(本小题满分10分)选修4—5:几何选讲
如图所示,已知与⊙
相切,
为切点,过点
的割线交圆于
两点,弦
,
相交于点
,
为
上一点,且
.
(Ⅰ)求证:;
(Ⅱ)若,求
的长.
【改编】(本小题满分12分)已知函数,
.
(Ⅰ)若函数在定义域上是增函数,求a的取值范围;
(Ⅱ)若函数有零点,求实数
的取值范围.
【原创】(本小题满分12分)已知抛物线C:=
.
(1)求过(2,0)点抛物线的切线方程;
(2)过D(0,2)作直线两条相互垂直直线分别与抛物线交于A、B、E、F四点,求四边形形AEBF面积的最小值.