本题共有3个小题,第1小题满分4分,第2小题满分6分,第3小题满分8分其中①6分、②2分。
设抛物线的焦点为
,过
且垂直于
轴的直线与抛物线交于
两点,已知
.
(1)求抛物线的方程;
(2)设,过点
作方向向量为
的直线与抛物线
相交于
两点,求使
为钝角时实数
的取值范围;
(3)①对给定的定点,过
作直线与抛物线
相交于
两点,问是否存在一条垂直于
轴的直线与以线段
为直径的圆始终相切?若存在,请求出这条直线;若不存在,请说明理由。
②对,过
作直线与抛物线
相交于
两点,问是否存在一条垂直于
轴的直线与以线段
为直径的圆始终相切?(只要求写出结论,不需用证明)
(本小题满分13分)如图,在四棱锥中,底面
为矩形,侧面
底面
,
.
(1)求证:面
;
(2)设为等边三角形,求直线
与平面
所成角的大小.
(本小题满分13分)在三角形ABC中,∠A,∠B,∠C的对边分别为且
(1)求∠A;
(2)若,求
的取值范围.
已知数列的前
项和为
,点
均在二次函数
的图象上.
(1)求数列的通项公式;
(2)设,求数列
的前
项和
(本题10分)已知直线
(1)若直线的斜率等于2,求实数
的值;
(2)若直线分别与x轴、y轴的正半轴交于A、B两点,O是坐标原点,求△AOB面积的最大值及此时直线的方程.
(本题13分)已知ABCD是矩形,AD=4,AB=2,E、F分别是线段AB、BC的中点,PA⊥平面ABCD.
(1)求证:PF⊥FD;
(2)设点G在PA上,且EG//平面PFD,试确定点G的位置.