知识迁移
当且
时,因为
≥
,所以
≥
,从而
≥
(当
时取等号).
记函数,由上述结论可知:当
时,该函数有最小值为
直接应用
已知函数与函数
, 则当
____时,
取得最小值为___.
变形应用
已知函数与函数
,求
的最小值,并指出取得
该最小值时相应的的值.
实际应用
已知某汽车的一次运输成本包含以下三个部分:一是固定费用,共元;二是燃油费,每千
米为元;三是折旧费,它与路程的平方成正比,比例系数为
.设该汽车一次运输的路
程为千米,求当
为多少时,该汽车平均每千米的运输成本最低?最低是多少元?
如图,点A、B、C、D在⊙O上,∠ADC=60°,C是弧AB的中点.
(1)判断△ABC的形状,并说明理由;
(2)若BC=cm,求图中阴影部分的面积.
市体育协会在天德湖公园主办的放风筝比赛. 比赛中小军在A处不小心让风筝挂在了一棵树的树梢上(如图),固定在了D处,此时风筝线AD与水平线的夹角为30°. 为了便于观察,小军迅速向前边移动边收线到达了离A处6米的B处,此时风筝线BD与水平线的夹角为45°. 已知点A、B、C在同一条直线上,∠ACD=90°. 请求出此时小军手中的风筝线BD的长度约是多少米?(本题中风筝线均视为线段,,
,最后结果精确到1米)
如图,在□ABCD中,∠ABD的平分线BE交AD于点E,∠CDB的平分线DF交BC于点F,连接BD.
(1)求证:△ABE≌△CDF;
(2)若AB=DB,求证:四边形DFBE是矩形.
为增强环保意识,某社区计划开展一次“低碳环保,绿色出行”的宣传活动,对部分家庭四月份平均每天用车的时间进行了一次抽样调查,并根据收集的数据绘制了下面两幅不完整的统计图.请根据图中提供的信息,解答下列问题:
(1)本次抽样调查了多少个家庭?
(2)将图1中的条形图补充完整,直接写出用车时间的中位数落在哪个时间段内;
(3)求用车时间在1~1.5小时的部分对应的扇形圆心角的度数;
(4)若该社区有车家庭有1200个,请你估计该社区用车时间不超过1.5小时的约有多少个家庭?
小明和小刚做游戏,用一个不透明袋子,里面装有形状、大小完全相同的2个红球和2个白球,并充分搅匀,让小刚从中摸出一个球不放回,再去摸第二个球,如果两次摸出的球颜色相同小刚赢,反之小明赢. 你认为这种游戏是否公平?请你借助树状图或列表的方法,运用概率的知识予以说明.