在平面直角坐标系中,已知二次函数
的图象经过点
和点
,直线
经过抛物线的顶点且与
轴垂直,垂足为
.
求该二次函数的表达式;
设抛物线上有一动点
从点
处出发沿抛物线向上运动,其纵坐标
随时间
≥
)的变化规律为
.现以线段
为直径作
.
①当点在起始位置点
处时,试判断直线
与
的位置关系,并说明理由;在点
运动的过程中,直线
与
是否始终保持这种位置关系? 请说明你的理由;
②若在点开始运动的同时,直线
也向上平行移动,且垂足
的纵坐标
随时间
的变化规律为
,则当
在什么范围内变化时,直线
与
相交? 此时,若直线
被
所截得的弦长为
,试求
的最大值.
如图所示,某居民小区要在一块一边靠墙(墙长15m)的空地上修建一个矩形花园ABCD,花园的一边靠墙,另三边用总长为40m的栅栏围成,若花园的BC边长为x米,花园的面积为y(m2)
(1)求y与x之间的函数关系式,并写出自变量x的取值范围;
(2)满足条件的花园面积能达到200m2吗?若能,求出此时x的值;若不能,说明理由;
(3)请结合题意,判断当x取何值时,花园的面积最大?
如图,AB是⊙O的弦,从⊙O上一点C作CD⊥AB于D,作∠OCD的平分线交⊙O于P,M为过P的切线PM上的点,过M作MF⊥OC于F,交PC于E
(1)求证:
(2)请探究ME与MP间的数量关系,并说明理由.
已知:关于的二次函数y=px2-(3p+2)x+2p+2(p>0)
(1)求证:无论p为何值时,此函数图象与x轴总有两个交点;
(2)设这两个交点坐标分别为(x1,0),(x2,0)(其中x1<x2)且S=x2-2x1,求S关于P的函数解析式
甲口袋中装有两个相同的小球,它们分别写有1和2;乙口袋中装有三个相同的小球,它们分别写有3.4和5;丙口袋中装有两个相同的小球,它们分别写有6和7.从这3个口袋中各随机地取出1个小球.请你用画树状图的方法求:
(1)取出的3个小球上恰好有两个偶数的概率是多少?
(2)取出的3个小球上全是奇数的概率是多少?
已知抛物线y=ax2+bx+c经过(-1,0),(0,-3),(2,-3)三点,求这条抛物线的解析式,并指出对称轴和顶点坐标.