游客
题文

在平面直角坐标系中,已知二次函数的图象经过点和点,直线经过抛物线的顶点且与轴垂直,垂足为.
求该二次函数的表达式;
设抛物线上有一动点从点处出发沿抛物线向上运动,其纵坐标随时间
)的变化规律为.现以线段为直径作.
①当点在起始位置点处时,试判断直线的位置关系,并说明理由;在点运动的过程中,直线是否始终保持这种位置关系? 请说明你的理由;
②若在点开始运动的同时,直线也向上平行移动,且垂足的纵坐标随时间的变化规律为,则当在什么范围内变化时,直线相交? 此时,若直线所截得的弦长为,试求的最大值.

科目 数学   题型 解答题   难度 困难
知识点: 二次函数在给定区间上的最值
登录免费查看答案和解析
相关试题

为配合“书香进校园”活动的开展,学校决定为各班级添置图书柜.原计划用4000元购买若干个书柜,由于市场价格变化,每个书柜单价上涨20元,实际购买时多花了400元.求书柜原来的单价是多少元?

如图,已知:AB∥CD,BE⊥AD,垂足为点E,CF⊥AD,垂足为点F,并且AE="DF" .
求证:四边形BECF是平行四边形.

△OAB的坐标分别为O(0,0),A(0,4),B(3,0),以原点为位似中心,在第一象限将△OAB扩大,使变换得到的△OEF与△OAB对应边的比为2∶1,

(1)画出△OEF;
(2)求四边形ABFE的面积.

先化简,再求值:,其中a=-1,b=

如图,抛物线轴交于A、B两点,与y轴交于点
C(0,-1).且对称轴为

(1)求抛物线的解析式及A、B两点的坐标;
(2)点D在x轴下方的抛物线上,则四边形ABDC的面积是否存在最大值,若存在,求出此时点D的坐标;若不存在,请说明理由;
(3)点Q在y轴上,点P在抛物线上,要使Q、P、A、B为顶点的四边形是平行四边形,求出所有满足条件的点P的坐标.

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号