游客
题文

在平面直角坐标系中,已知二次函数的图象经过点和点,直线经过抛物线的顶点且与轴垂直,垂足为.
求该二次函数的表达式;
设抛物线上有一动点从点处出发沿抛物线向上运动,其纵坐标随时间
)的变化规律为.现以线段为直径作.
①当点在起始位置点处时,试判断直线的位置关系,并说明理由;在点运动的过程中,直线是否始终保持这种位置关系? 请说明你的理由;
②若在点开始运动的同时,直线也向上平行移动,且垂足的纵坐标随时间的变化规律为,则当在什么范围内变化时,直线相交? 此时,若直线所截得的弦长为,试求的最大值.

科目 数学   题型 解答题   难度 困难
知识点: 二次函数在给定区间上的最值
登录免费查看答案和解析
相关试题

如图,在 Rt Δ ABC 中, ACB = 90 ° O BC AC 分别相切于点 E F BO 平分 ABC ,连接 OA

(1)求证: AB O 的切线;

(2)若 BE = AC = 3 O 的半径是1,求图中阴影部分的面积.

如图,反比例函数 y = k x 的图象与一次函数 y = mx + n 的图象相交于 A ( a , - 1 ) B ( - 1 , 3 ) 两点.

(1)求反比例函数和一次函数的解析式;

(2)设直线 AB y 轴于点 C ,点 N ( t , 0 ) x 轴正半轴上的一个动点,过点 N NM x 轴交反比例函数 y = k x 的图象于点 M ,连接 CN OM .若 S 四边形 COMN > 3 ,求 t 的取值范围.

2021年,黄冈、咸宁、孝感三市实行中考联合命题,为确保联合命题的公平性,决定采取三轮抽签的方式来确定各市选派命题组长的学科.第一轮,各市从语文、数学、英语三个学科中随机抽取一科;第二轮,各市从物理、化学、历史三个学科中随机抽取一科;第三轮,各市从道德与法治、地理、生物三个学科中随机抽取一科.

(1)黄冈在第一轮抽到语文学科的概率是   

(2)用画树状图或列表法求黄冈在第二轮和第三轮抽签中,抽到的学科恰好是历史和地理的概率.

如图,在 ΔABC ΔDEC 中, A = D BCE = ACD

(1)求证: ΔABC ΔDEC

(2)若 S ΔABC : S ΔDEC = 4 : 9 BC = 6 ,求 EC 的长.

计算: | 1 - 3 | - 2 sin 60 ° + ( π - 1 ) 0

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号