(理)(14分)设函数,其中
(I)当时,判断函数
在定义域上的单调性;
(II)求函数的极值点;
(III)证明对任意的正整数n,不等式都成立.
若,
,
,求
。
已知圆过定点
,圆心
在抛物线
上,
、
为圆
与
轴的交点.
(Ⅰ)当圆心是抛物线的顶点时,求抛物线准线被该圆截得的弦长.
(Ⅱ)当圆心在抛物线上运动时,
是否为一定值?请证明你的结论.
(Ⅲ)当圆心在抛物线上运动时,记
,
,求
的最大值,并求出此时圆
的方程.
已知等比数列中,
,公比
,
又恰为一个等差数列的第7项,第3项和第1项.
(1)求数列的通项公式;
(2)设,求数列
如图,在三棱锥中,直线
平面
,且
,又点
,
,
分别是线段
,
,
的中点,且点
是线段
上的动点.
(1)证明:直线平面
;
(2)若,求二面角
的平面角的余弦值.
已知函数,x∈R.
(1)求函数f(x)的最小正周期及对称轴方程;
(2)当时,求函数f(x)的最大值和最小值及相应的x值.