如图1,在直角梯形中,
,
,
,点
为
中点.将
沿
折起,使平面
平面
,得到几何体
,如图2所示.
(1)在上找一点
,使
平面
;
(2)求点到平面
的距离.
(选修4-4:坐标系与参数方程)在直角坐标系中,以原点为极点,轴的正半轴为极轴建立极坐标系,两种坐标系取相同的单位长度.已知曲线
(
为参数)和曲线
相交于
两点,求
中点的直角坐标.
(选修4-2:矩阵与变换)已知矩阵,其中
均为实数,若点
在矩阵
的变换作用下得到点
,求矩阵
的特征值.
(选修4-1:几何证明选讲)如图,AB是圆O的直径,D为圆O上一点,过D作圆O的切线交AB的延长线于点C.若AB =" 2" BC ,
求证:.
(本小题满分16分)若数列满足①
,②存在常数
与
无关),使
.则称数列
是“和谐数列”.
(1)设为等比数列
的前
项和,且
,求证:数列
是“和谐数列”;
(2)设是各项为正数,公比为q的等比数列,
是
的前
项和,求证:数列
是“和谐数列”的充要条件为
.
(本小题满分16分)已知函数,
,设
.
(1)若在
处取得极值,且
,求函数h(x)的单调区间;
(2)若时函数h(x)有两个不同的零点x1,x2.
①求b的取值范围;②求证:.