游客
题文

(本小题满分13分)如图,椭圆的焦点在轴上,左、右顶点分别为,上顶点为,抛物线分别以为焦点,其顶点均为坐标原点相交于直线上一点.
(Ⅰ)求椭圆及抛物线的方程;
(Ⅱ)若动直线与直线垂直,且与椭圆交于不同的两点,已知点,求的最小值.

科目 数学   题型 解答题   难度 较易
登录免费查看答案和解析
相关试题

如图;已知椭圆C:的离心率为,以椭圆的左顶点T为圆心作圆T:设圆T与椭圆C交于点M、N.

(1)求椭圆C的方程;
(2)求的最小值,并求此时圆T的方程;
(3)设点P是椭圆C 上异于M,N的任意一点,且直线MP,NP分别与轴交于点R,S,O为坐标原点。求证:为定值.

已知抛物线
(1)若圆心在抛物线上的动圆,大小随位置而变化,但总是与直线相切,求所有的圆都经过的定点坐标;
(2)抛物线的焦点为,若过点的直线与抛物线相交于两点,若,求直线的斜率;
(3)若过点且相互垂直的两条直线,抛物线与交于点交于点
证明:无论如何取直线,都有为一常数.

如图,已知点是离心率为的椭圆上的一点,斜率为的直线交椭圆两点,且三点互不重合.

(1)求椭圆的方程;(2)求证:直线的斜率之和为定值.

已知椭圆C:()的短轴长为2,离心率为
(1)求椭圆C的方程
(2)若过点M(2,0)的引斜率为的直线与椭圆C相交于两点G、H,设P为椭圆C上一点,且满足(O为坐标原点),当时,求实数的取值范围?

·大纲理)已知双曲线C:(a>0,b>0)的左、右焦点分别为,离心率为3,直线y=2与C的两个交点间的距离为.
(1)求a,b;
(2)设过的直线l与C的左、右两支分别交于A、B两点,且,证明:成等比数列.

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号