已知集合是满足下列性质的函数
的全体:在定义域
内存在
,使得
成立.
(1)函数是否属于集合
?说明理由;
(2)若函数属于集合
,试求实数
和
的取值范围;
(3)设函数属于集合
,求实数
的取值范围.
(本题共14分)已知函数。
(1)求的定义域;
(2)判定的奇偶性;
(3)是否存在实数,使得
的定义域为
时,值域为
?若存在,求出实数
的取值范围;若不存在,请说明理由。
(本题共13分)已知函数在
上满足
,且当
时,
。
(1)求、
的值;
(2)判定的单调性;
(3)若对任意x恒成立,求实数
的取值范围。
(本题共12分)有一小型自来水厂,蓄水池中已有水450吨,水厂每小时可向蓄水池注水80吨,同时蓄水池向居民小区供水,小时内供水总量为
吨。现在开始向池中注水并同时向居民小区供水,问:
(1)多少小时后蓄水池中的水量最少?
(2)如果蓄水池中存水量少于150吨时,就会出现供水紧张,那么有几个小时供水紧张?
(本题共12分)设为定义在
上的偶函数,当
时,
,且
的图象经过点
,又在
的图象中,有一部分是顶点为(0,2),且过
的一段抛物线。
(1)试求出的表达式;
(2)求出值域;
(本题共12分)
(1)计算
(2)解方程: