已知数列满足
,且
,
为
的前
项和.
(1)求证:数列是等比数列,并求
的通项公式;
(2)如果对于任意,不等式
恒成立,求
实数
的取值范围.
(本小题满分13分)
如图5,已知点是圆心为
半径为1的半圆弧上从点
数起的第一个三等分点,
是直径,
,
平面
,点
是
的中点.
(1)求二面角的余弦值.
(2)求点到平面
的距离.
(本小题满分13分)
如图,在正四面体中,
分别是棱
的中点.
(1)求证:四边形是平行四边形;
(2)求证:平面
;
(3)求证:平面
.
(本小题满分12分)
在平面直角坐标系中,有三个点的坐标分别是.
(1)证明:A,B,C三点不共线;
(2)求过A,B的中点且与直线平行的直线方程;
(3)设过C且与AB所在的直线垂直的直线为,求
与两坐标轴围成的三角形的面积.
设函数
(1)若曲线在点
处的切线方程是
,求
的值
(2)求函数的单调区间及极值
已知椭圆C:的左焦点
坐标为
,且椭圆C的短轴长为4,斜率为1的直线
与椭圆G交于A,B两点,以AB为底边的等腰三角形,顶点为
.
(1)求椭圆C的方程
(2)求的面积