已知数列是各项均不为0的等差数列,公差为d,
为其前n项和,且满足
,
.数列
满足
,
,
为数列
的前n项和.
(1)求数列的通项公式
和数列
的前n项和
;
(2)若对任意的,不等式
恒成立,求实数
的取值范围;
(3)是否存在正整数,使得
成等比数列?若存在,求出所有
的值;若不存在,请说明理由.
设命题:函数
是R上的减函数,命题q:
在
上的值域为
,若“
或
”为真命题,“
且
”为假命题,求实数a的取值范围.
已知曲线C的极坐标方程 是=1,以极点为原点,极轴为
轴的正半轴建立平面直角坐标系,直线
的参数方程为
为参数)。
(1)写出直线与曲线C的直角坐标方程;
(2)设曲线C经过伸缩变换得到曲线
,设曲线
上任一点为
,求
的最小值。
记关于x的不等式<0 (a>0).的解集为P,不等式|x-1|≤1的解集为Q.
(1)求a=3,求P;
(2)若Q⊆P,求正数a的取值范围.
已知集合A={x|mx2-2x+3=0,m∈R}.
(1)若A是空集,求m的取值范围;
(2)若A中只有一个元素,求m的值;
(3)若A中含有两个元素,求m的取值范围.
设椭圆:
的左、右焦点分别为
,已知椭圆
上的任意一点
,满足
,过
作垂直于椭圆长轴的弦长为3.
(1)求椭圆的方程;
(2)若过的直线交椭圆于
两点,求
的取值范围.