本题满分14分)
四棱锥P-ABCD中,底面ABCD为直角梯形,,AD∥BC, AB="BC=2," AD="4,"
PA⊥底面ABCD,PD与底面ABCD成角,E是PD的中点.
(1)点H在AC上且EH⊥AC,求的坐标;
(2)求AE与平面PCD所成角的余弦值;
(本小题满分10分)某企业拟投资、
两个项目,预计投资
项目
万元可获得利润
万元;投资项目
万元可获得利润
万元.若该企业用40
万元来投资这两个项目,则分别投资多少万元能获得最大利润?最大利润是多少?
(本小题满分10分)如图,四边形ABCD是正方形,O是正方形的中心,PO底面ABCD,E是PC的中点.
求证:(1) PA∥平面BDE .
(2)平面PAC平面BDE .
(本小题满分8分)已知直线:
和点
(1,2),设过
点与
垂直的直线为
.
(1)求直线的方程;
(2)求直线与两坐标轴围成的三角形的面积.
(本小题满分8分)设集合,
,
.
(1)求;
(2)若,求实数
的取值范围.
(本小题满分12分)
已知椭圆的中心在原点,焦点在轴上,长轴长是短轴长的2倍且经过点M(2,1),平行于OM的直线
在
轴上的截距为
,
交椭圆于A、B两个不同点.
(1)求椭圆的方程;
(2)求m的取值范围;
(3)求证直线MA、MB与轴始终围成一个等腰三角形.