游客
题文

在Rt△ABO中,∠ABO=30°,BO=4,分别以OA、OB边所在的直线建立平面直角坐标系,D为x轴正半轴上一点,以OD为一边在第一象限内作等边△ODE.
(Ⅰ)如图①, 当E点恰好落在线段AB上,求点E的坐标;
    
(Ⅱ)在(Ⅰ)问的条件下,将△ODE在线段OB上向右平移(如图②),图中是否存在一条与线段始终相等的线段?如果存在,请指出这条线段,并加以证明;如果不存在,请说明理由.
(Ⅲ)若点D从原点出发沿x轴的正方向移动,设点D到原点的距离为x,△ODE与△AOB重叠部分面积为y,请直接写出y与x的函数关系式,并写出自变量x的取值范围.

科目 数学   题型 解答题   难度 中等
知识点: 一次函数的最值
登录免费查看答案和解析
相关试题

求两个正整数的最大公约数是常见的数学问题,中国古代数学专著《九章算术》中便记载了求两个正整数最大公约数的一种方法 更相减损术,术曰:“可半者半之,不可半者,副置分母、子之数,以少成多,更相减损,求其等也.以等数约之”,意思是说,要求两个正整数的最大公约数,先用较大的数减去较小的数,得到差,然后用减数与差中的较大数减去较小数,以此类推,当减数与差相等时,此时的差(或减数)即为这两个正整数的最大公约数.

例如:求91与56的最大公约数

解:

请用以上方法解决下列问题:

(1)求108与45的最大公约数;

(2)求三个数78、104、143的最大公约数.

我州某养殖场计划购买甲、乙两种鱼苗600条,甲种鱼苗每条16元,乙种鱼苗每条20元,相关资料表明:甲、乙两种鱼苗的成活率为 80 % 90 %

(1)若购买这两种鱼苗共用去11000元,则甲、乙两种鱼苗各购买多少条?

(2)若要使这批鱼苗的总成活率不低于 85 % ,则乙种鱼苗至少购买多少条?

(3)在(2)的条件下,应如何选购鱼苗,使购买鱼苗的总费用最低?最低费用是多少?

2016年黔西南州教育局组织全州中小学生参加全省安全知识网络竞赛,在全州安全知识竞赛结束后,通过网上查询,某校一名班主任对本班成绩(成绩取整数,满分100分)作了统计分析,绘制成如下频数分布表和频数分布直方图,请你根据图表提供的信息,解答下列问题:

(1)频数分布表中 a =    b =    c =   

(2)补全频数分布直方图

(3)为了激励学生增强安全意识,班主任准备从超过90分的学生中选2人介绍学习经验,那么取得100分的小亮和小华同时被选上的概率是多少?请用列表法或画树状图加以说明,并列出所有等可能结果.

频数分布表

分组(分 )

频数

频率

50 < x 60

2

0.04

60 < x 70

12

a

70 < x < 80

b

0.36

80 < x 90

14

0.28

90 < x 100

c

0.08

合计

50

1

如图,点 A O 直径 BD 延长线上的一点, C O 上, AC = BC AD = CD

(1)求证: AC O 的切线;

(2)若 O 的半径为2,求 ΔABC 的面积.

如图,四边形 OABC 是边长为4的正方形,点 P OA 边上任意一点(与点 O A 不重合),连接 CP ,过点 P PM CP AB 于点 D ,且 PM = CP ,过点 M MN / / AO ,交 BO 于点 N ,连接 ND BM ,设 OP = t

(1)求点 M 的坐标(用含 t 的代数式表示);

(2)试判断线段 MN 的长度是否随点 P 的位置的变化而改变?并说明理由.

(3)当 t 为何值时,四边形 BNDM 的面积最小;

(4)在 x 轴正半轴上存在点 Q ,使得 ΔQMN 是等腰三角形,请直接写出不少于4个符合条件的点 Q 的坐标(用含 t 的式子表示).

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号