( 本小题满分12分)
已知直线:
与
:
的交点为
.
(1)求交点的坐标;
(2)求过点且平行于直线
:
的直线方程;
(3)求过点且垂直于直线
:
直线方程.
在△中,角
、
、
的对边分别为
,若
,
且.(1)求
的值;(2)若
,求△
的面积.
(本小题满分12分)
(Ⅰ)求以下不等式的解集:
(1) (2)
(Ⅱ)若关于x的不等式的解集为
,求实数m的值.
(本小题满分14分)已知数列{an}的前n项和为,且满足
,数列
满足
,
为数列
的前n项和.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)若对任意的,不等式
恒成立,求实数
的取值范围;
(Ⅲ)是否存在正整数m,n(1<m<n),使得,
,
成等比数列?若存在,求出所有m,n的值;若不存在,请说明理由.
(本小题满分14分)
已知点到直线l:
的距离为
.数列{an}的首项
,且点列
均在直线l上.
(Ⅰ)求b的值;
(Ⅱ)求数列{an}的通项公式;
(Ⅲ)求数列的前n项和
.
(本小题满分14分)如图所示,某海岛上一观察哨A在上午11时测得一轮船在海岛北偏东的C处,12时20分测得船在海岛北偏西
的B处,12时40分轮船到达位于海岛正西方且距海岛5km的E港口,如果轮船始终匀速直线前进,问船速多少?