如图所示,直角梯形ABCD中,AD∥BC,∠B=90°,AD=6,BC=8,AB=3,点M是BC的中点,点P从点M出发沿MB以每秒1个单位长的速度向点B匀速运动,到达点B后立刻以原速度沿BM返回;点Q从点M出发以每秒1个单位长的速度在射线MC上匀速运动,在点P、Q的运动过程中,以PQ为边作等边△EPQ,使它与梯形ABCD在射线BC的同侧,点P、Q同时出发,点P返回到点M时停止运动,点Q也随之停止,设点P、Q运动的时间是t秒(t>0)。
(1)设PQ的长为y,写出y与t之间的函数关系式(写出t的取值范围)。
(2)当BP=1时,求△EPQ与梯形ABCD重叠部分的面积。
(3)随着时间t的变化,线段AD会有一部分被△EPQ覆盖,被覆盖线段的长度在某个时刻会达到最大值,请回答:该最大值能否持续一个时段?若能,直接写出t的取值范围;若不能,请说明理由。
下列 网格图都是由9个相同的小正方形组成,每个网格图中有3个小正方形已涂上阴影,请在余下的6个空白小正方形中,按下列要求涂上阴影:
(1)选取1个涂上阴影,使4个阴影小正方形组成一个轴对称图形,但不是中心对称图形.
(2)选取1个涂上阴影,使4个阴影小正方形组成一个中心对称图形,但不是轴对称图形.
(3)选取2个涂上阴影,使5个阴影小正方形组成一个轴对称图形.
(请将三个小题依次作答在图1、图2、图3中,均只需画出符合条件的一种情形)
如图,矩形 中,点 为 上一点, 为 的中点,且 .
(1)当 为 中点时,求证: ;
(2)当 时,求 的值;
(3)设 , ,作点 关于 的对称点 ,连接 , ,若点 到 的距离是 ,求 的值.
如图1,地面 上两根等长立柱 , 之间悬挂一根近似成抛物线 的绳子.
(1)求绳子最低点离地面的距离;
(2)因实际需要,在离 为3米的位置处用一根立柱 撑起绳子(如图 ,使左边抛物线 的最低点距 为1米,离地面1.8米,求 的长;
(3)将立柱 的长度提升为3米,通过调整 的位置,使抛物线 对应函数的二次项系数始终为 ,设 离 的距离为 ,抛物线 的顶点离地面距离为 ,当 时,求 的取值范围.
如图, 是以 为直径的半圆 的切线, 为半圆上一点, , , 的延长线相交于点 .
(1)求证: 是半圆 的切线;
(2)连接 ,求证: ;
(3)若 , ,求 的长.
2016年3月27日“丽水半程马拉松竞赛”在莲都举行,某运动员从起点万地广场西门出发,途经紫金大桥,沿比赛路线跑回终点万地广场西门.设该运动员离开起点的路程 (千米)与跑步时间 (分钟)之间的函数关系如图所示,其中从起点到紫金大桥的平均速度是0.3千米 分,用时35分钟,根据图象提供的信息,解答下列问题:
(1)求图中 的值;
(2)组委会在距离起点2.1千米处设立一个拍摄点 ,该运动员从第一次经过 点到第二次经过 点所用的时间为68分钟.
①求 所在直线的函数解析式;
②该运动员跑完赛程用时多少分钟?