sin 2 ( - 25 ° ) + cos 2 55 ° - sin ( - 25 ° ) cos 55 ° 某同学在一次研究性学习中发现,以下五个式子的值都等于同一个常数. (1) sin 2 13 ° + cos 2 17 ° - sin 13 ° cos 17 °
(2) sin 2 15 ° + cos 2 15 ° - sin 15 ° cos 15 °
(3) s i n 2 18 ° + c o s 2 12 ° - s i n 18 ° c o s 12 °
(4) sin 2 ( - 18 ° ) + cos 2 48 ° - sin ( - 18 ° ) cos 48 °
(5) sin 2 ( - 25 ° ) + cos 2 55 ° - sin ( - 25 ° ) cos 55 °
(Ⅰ)试从上述五个式子中选择一个,求出这个常数 (Ⅱ)根据(Ⅰ)的计算结果,将该同学的发现推广为三角恒等式,并证明你的结论.
化简求值: (1); (2); (3).
已知集合,. (1)若,求; (2)若,求的取值范围.
设曲线:,表示的导函数。 (Ⅰ)当时,求函数的单调区间; (Ⅱ)求函数的极值; (Ⅲ)当时,对于曲线上的不同两点,是否存在唯一,使直线的斜率等于?并证明你的结论。
如图,在直三棱柱中, (1)求证 (2)在上是否存在点使得 (3)在上是否存在点使得?
已知函数. (Ⅰ)若曲线在点处的切线与直线垂直,求函数的单调区间; (Ⅱ)若对于都有成立,试求的取值范围;
试卷网 试题网 古诗词网 作文网 范文网
Copyright ©2020-2025 优题课 youtike.com 版权所有
粤ICP备20024846号