(本小题满分14分)已知,函数
.
(Ⅰ)当时,
(ⅰ)若,求函数
的单调区间;
(ⅱ)若关于的不等式
在区间
上有解,求
的取值范围;
(Ⅱ)已知曲线在其图象上的两点
,
(
)处的切线分别为
.若直线
与
平行,试探究点
与点
的关系,并证明你的结论.
(本小题满分12分) .已知偶函数f(x)在(0,+∞)上为增函数,且f(2)=0,解不等式f[log2(x2+5x+4)]≥0。
(12分)(2010·山东德州模拟)已知f(x)=(x2+ax+a)e-x(a≤2,x∈R).
(1)当a=1时,求f(x)的单调区间;(2)若f(x)的极大值为4e-2,求出a的值.
(14分)设函数f(x)=ax2+bx+k(k>0)在x=0处取得极值,且曲线y=f(x)在点(1,f(1))处的切线垂直于直线x+2y+1=0.
(1)求a,b的值;
(2)若函数g(x)=,讨论g(x)的单调性.
(13分)已知函数f(x)=ax2+2x+c(a、c∈N*)满足:
①f(1)=5;②6<f(2)<11.
(1)求a、c的值;
(2)若对任意的实数x∈,都有f(x)-2mx≤1成立,求实数m的取值范围.
(12分)如图所示:图1是定义在R上的二次函数f(x)的部分图象,图2是函数g(x)=loga(x+b)的部分图象.
(1)分别求出函数f(x)和g(x)的解析式;
(2)如果函数y=g(f(x))在区间[1,m)上单调递减,求m的取值范围.