(本小题14分)请你设计一个包装盒,如图所示,ABCD是边长为60cm的正方形硬纸片,切去阴影部分所示的四个全等的等腰直角三角形,再沿虚线折起,使得ABCD四个点重合于图中的点P,正好形成一个正四棱柱(底面是正方形的直棱柱)形状的包装盒,E、F在AB上是被切去的等腰直角三角形HEF斜边的两个端点,设AE=FB=xcm.
(1)请用分别表示|GE|、|EH|的长
(2)若广告商要求包装盒侧面积S(cm2)最大,试问x应取何值?
|
(3)若广告商要求包装盒容积V(cm3)最大,试问x应取何值?并求出此时包装盒的高与底面边长的比值.
(本小题满分12分.其中(Ⅰ)小问5分,(Ⅱ)小问7分)
已知函数,
.
(Ⅰ)求函数的最大值;
(Ⅱ)对于一切正数,恒有
成立,求实数
的取值组成的集合.
(本小题满分12分.其中(Ⅰ)小问6分,(Ⅱ)小问6分)
如图,已知四棱锥P-ABCD的底面ABCD是边长为2的正方形,PD⊥底面ABCD,E、F分别为棱BC、AD的中点.
(Ⅰ)若PD=1,求异面直线PB和DE所成角的余弦值;
(Ⅱ)若二面角P-BF-C的余弦值为,求四棱锥P-ABCD的体积
(本小题满分13分.其中(Ⅰ)小问6分,(Ⅱ)小问7分)
QQ先生的鱼缸中有7条鱼,其中6条青鱼和1条黑鱼,计划从当天开始,每天中午从该鱼缸中抓出1条鱼(每条鱼被抓到的概率相同)并吃掉.若黑鱼未被抓出,则它每晚要吃掉1条青鱼(规定青鱼不吃鱼).
(Ⅰ)求这7条鱼中至少有6条被QQ先生吃掉的概率;
(Ⅱ)以表示这7条鱼中被QQ先生吃掉的鱼的条数,求
的分布列及其数学期望
.
(本小题满分13分.其中(Ⅰ)小问6分,(Ⅱ)小问7分)
已知数列满足:
(Ⅰ)求数列的通项公式;
(Ⅱ)设,求数列
的前
项和
(本小题满分13分.其中(Ⅰ)小问6分,(Ⅱ)小问7分)
已知.
(Ⅰ)求的值;
(Ⅱ)求的值