已知抛物线 与圆 有一个公共点 ,且在 处两曲线的切线与同一直线 .
(I)求
;
(II)设
是异于
且与
及
都相切的两条直线,
的交点为
,求
到
的距离。
本小题12分)命题p: 函数y=在(-1, +
)上单调递增, 命题
函数y=lg[
]的定义域为R
(1) 若“或
”为真命题,求
的取值范围;
(2) 若“或
”为真命题,“
且
”为假命题,求
的取值范围
(本小题14分) 如图,在平面直角坐标系xoy中,设点F(0, p)(p>0), 直线l : y= -p, 点P在直线l上移动,R是线段PF与x轴的交点, 过R、P分别作直线、
,使
,
.
(1)求动点Q的轨迹C的方程;
(2)在直线l上任取一点M做曲线C的两条切线,设切点为A、B,求证:直线AB恒过一定点;
(3)对(2)求证:当直线MA, MF, MB的斜率存在时,直线MA, MF, MB的斜率的倒数成等差数列.
(本小题13分) 已知数列{a}满足0<a
, 且
(n
N*).
(1) 求证:an+1≠an;
(2) 令a1=,求出a2、a3、a4、a5的值,归纳出an , 并用数学归纳法证明.
(本小题12分) 将圆O: 上各点的纵坐标变为原来的一半 (横坐标不变), 得到曲线
、抛物线
的焦点是直线y=x-1与x轴的交点.
(1)求,
的标准方程;
(2)请问是否存在直线满足条件:① 过
的焦点
;②与
交于不同两
点,
,且满足
?若存在,求出直线
的方程; 若不存在,说明
理由.
(本小题12分) 已知p:,q:x2-2x+1-m2≤0(m>0),且┐p是┐q的必要而不充分条件,求实数m的取值范围.