游客
题文

已知 { a n } 是等差数列,其前 n 项和为 S n { b n } 是等比数列,且 a 1 + b 1 = 2 , a 4 + b 4 = 27 , S 4 - b 4 = 10 .
(I)求数列 { a n } { b n } 的通项公式;
(II)记 T n = a 1 b 1 + a 2 b 2 + . . . + a n b n , n N + ,求证: T n - 8 = a n + 1 b n + 1 , n N + , n > 2 .

科目 数学   题型 解答题   难度 较易
知识点: 数列综合
登录免费查看答案和解析
相关试题

直角坐标平面上,为原点,为动点,. 过点轴于,过轴于点. 记点的轨迹为曲线
,过点作直线交曲线于两个不同的点(点之间).
(1)求曲线的方程;
(2)是否存在直线,使得,并说明理由.

已知数列的前项和为,点在直线上.数列满足,且,前9项和为153.
(1)求数列{的通项公式;
(2)设,数列的前和为,求使不等式对一切都成立的最大正整数的值;
(3)设,问是否存在,使得成立?若存在,求出的值;若不存在,请说明理由.

如图1,,过动点A,垂足在线段上且异于点,连接,沿将△折起,使(如图2所示).

(1)当的长为多少时,三棱锥的体积最大;
(2)当三棱锥的体积最大时,设点分别为棱的中点,试在棱上确定一点,使得,并求与平面所成角的大小.

某商场为吸引顾客消费推出一项优惠活动,活动规则如下:消费额每满100元可转动如图所示的转盘一次,并获得相应金额的返券,假定指针等可能地停在任一位置. 若指针停在区域返券60元;停在区域返券30元;停在区域不返券. 例如:消费218元,可转动转盘2次,所获得的返券金额是两次金额之和.

(1)若某位顾客消费128元,求返券金额不低于30元的概率;
(2)若某位顾客恰好消费280元,并按规则参与了活动,他获得返券的金额记为(元),求随机变量的分布列和数学期望.

中,内角的对边分别为,且
(1)求A的大小;
(2)求的最大值.

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号