在如图所示的几何体中,四边形ABCD为矩形,平面ABEF平面ABCD,EF//AB,,AD=2,AB= AF=2EF=l,点P在棱DF上.(1)若P为DF的中点,求证:BF//平面ACP(2)若二面角D-AP-C的余弦值为,求PF的长度.
设数列满足, (Ⅰ)求数列的通项公式; (Ⅱ)令,求数列的前n项和.
已知函数,的最大值是1,其图像经过点. (Ⅰ)求的解析式; (Ⅱ)已知
正三棱锥P—ABC的侧棱长为l,两侧棱的夹角为2,求它的外接球的体积。
已知:球的半径为R,要在球内作一内接圆柱,问这个圆柱的底面半径和高为何值时,它的侧面积最大?
在球心同侧有相距9cm的两个平行截面,它们的面积分别是49π和400π、求球的表面积、
试卷网 试题网 古诗词网 作文网 范文网
Copyright ©2020-2025 优题课 youtike.com 版权所有
粤ICP备20024846号