已知函数 f ( x ) = 1 3 x 3 + 1 - a 2 x - a x - a , x ∈ R 其中 a > 0 . (1)求函数 f ( x ) 的单调区间; (2)若函数 f ( x ) 在区间(-2,0)内恰有两个零点,求 a 的取值范围; (3)当 a = 1 时,设函数 f ( x ) 在区间 [ t , t + 3 ] 上的最大值为 M ( t ) ,最小值为 m ( t ) ,记 g ( t ) = M ( t ) - m ( t ) ,求函数 g ( t ) 在区间[-3,-1]上的最小值。
已知是纯虚数,求在复平面内对应点的轨迹.
设复数满足,求的最大值和最小值.
计算 (1);(2); (3)
求
计算。
试卷网 试题网 古诗词网 作文网 范文网
Copyright ©2020-2025 优题课 youtike.com 版权所有
粤ICP备20024846号