已知函数 (16分)(1)求函数的定义域;(2)判断的奇偶性并证明;
若a、b、c都是正数,且a+b+c=1, 求证: (1–a)(1–b)(1–c)≥8abc
已知双曲线经过点M(),且以直线x= 1为右准线. (1)如果F(3,0)为此双曲线的右焦点,求双曲线方程; (2)如果离心率e=2,求双曲线方程.
已知椭圆:上的两点A(0,)和点B,若以AB为边作正△ABC,当B变动时,计算△ABC的最大面积及其条件.
已知抛物线C的准线为x =(p>0),顶点在原点,抛物线C与直线l:y =x-1相交所得弦的长为3,求的值和抛物线方程.
求两焦点的坐标分别为(-2,0),(2,0),且经过点P(2,)的椭圆方程.
试卷网 试题网 古诗词网 作文网 范文网
Copyright ©2020-2025 优题课 youtike.com 版权所有
粤ICP备20024846号