游客
题文

如图,矩形OABC中,A(6,0)、C(0,2)、D(0,3),射线l过点D且与x轴平行,点P、Q分别是l和x轴正半轴上动点,满足∠PQO=60°.

(1)①点B的坐标是  ;②∠CAO=   度;③当点Q与点A重合时,点P的坐标为   ;(直接写出答案)
(2)设OA的中心为N,PQ与线段AC相交于点M,是否存在点P,使△AMN为等腰三角形?若存在,请直接写出点P的横坐标为m;若不存在,请说明理由.
(3)设点P的横坐标为x,△OPQ与矩形OABC的重叠部分的面积为S,试求S与x的函数关系式和相应的自变量x的取值范围.

科目 数学   题型 解答题   难度 较难
知识点: 解直角三角形
登录免费查看答案和解析
相关试题

同学们在小学阶段做过这样的折纸游戏:把一个长方形纸片经过折叠可以得到新的四边形.如图,将长方形ABCD沿DE折叠,使点A与CD边上的点F重合,再沿EF剪开,即得到四边形DAEF.
求证:四边形DAEF为正方形.

如图,四边形ABCD是正方形,对角线AC与BD相交于点O,若AO=2,求:

(1)∠ABD的度数;
(2)BD的长;
(3)正方形ABCD的面积.

操作示例
对于边长为a的两个正方形ABCD和EFGH,按图1所示的方式摆放,沿虚线BD、EG剪开后,可以按图1所示的移动方式拼接为四边形BNED.从拼接的过程容易得到结论:

①四边形BNED是正方形;
②S正方形ABCD+S正方形EFGH=S正方形BNED
实践与探究
(1)对于边长分别为a,b(a>b)的两个正方形ABCD和EFGH,按图2所示的方式摆放,连接DE,过点D作DM⊥DE,交AB于点M,过点M作MN⊥DM,过点E作EN⊥DE,MN与EN相交于点N.
①证明:四边形MNED是正方形,并用含a,b的代数式表示正方形MNED的面积;
②在图2中,将正方形ABCD和正方形EFGH沿虚线剪开后,能够拼接为正方形MNED,请简略说明你的拼接方法(类比图1,用数字表示对应的图形);

(2)对于n(n是大于2的自然数)个任意的正方形,能否通过若干次拼接,将其拼接成为一个正方形?请简要说明你的理由.

如图,△ABC中,AB=AC,AD是△ABC的角平分线,点O为AB的中点,连接DO并延长到点E,使OE=OD,连接AE,BE.

(1)求证:四边形AEBD是矩形;
(2)当△ABC满足什么条件时,矩形AEBD是正方形?并说明理由.

如图,正方形ABCD中,E,F分别为BC,CD上的点,且AE⊥BF,垂足为点G,求证:AE=BF.

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号