如图,在四边形ABCD中,对角线AC、BD相交于点O,直线MN经过点O,设锐角∠DOC=∠,将△DOC以直线MN为对称轴翻折得到△D’OC’,直线A D’、B C’相交于点P.
(Ⅰ)当四边形ABCD是矩形时,如图1,请猜想A D’、B C’的数量关系以及∠APB与∠α的大小关系;
(Ⅱ)当四边形ABCD是平行四边形时,如图2,(1)中的结论还成立吗?
(Ⅲ)当四边形ABCD是等腰梯形时,如图3,∠APB与∠α有怎样的数量关系?请证明.
(1)计算:
(2)化简:
.
如图,P为正方形ABCD的对称中心,正方形ABCD的边长为,
,直线OP交AB于N,DC于M,点H从原点O出发沿x轴的正半轴方向以1个单位每秒速度运动,同时,点R从O出发沿OM方向以
个单位每秒速度运动,运动时间为t,求:
(1)直接写出A、D、P的坐标;
(2)求△HCR面积S与t的函数关系式;
(3)当t为何值时,△ANO与△DMR相似?
(4)求以A、B、C、R为顶点的四边形是梯形时t的值.
问题背景(1)如图1,△ABC中,DE∥BC分别交AB,AC于D,E两点,过点E作EF∥AB交BC于点F.请按图示数据填空:
四边形DBFE的面积▲,
△EFC的面积S1=▲,
△ADE的面积S2=▲.
探究发现(2)在(1)中,若
,
,DE与BC间的距离为
.请证明S2=4S1 S2.
拓展迁移(3)如图2,平行四边形DEFG的四个顶点在△ABC的三边上,若△ADG、△DBE、△GFC的面积分别为2、5、3,试利用(2)中的结论求△ABC的面积.
如图,已知正比例函数和反比例函数的图像都经过点M(-2,),
且P(,-2)为双曲线上的一点.
(1)求出正比例函数和反比例函数的关系式;
(2)观察图象,写出正比例函数值大于反比例函数值时自变量
的取值范围;
(3)若点Q在第一象限中的双曲线上运动,作以OP、OQ为邻边的平行四边形OPCQ,求平行四边形OPCQ周长的最小值.
如图,AB是⊙O的直径,∠BAC=30°,M是OA上一点,过M作AB的垂线交AC于点N,交BC的延长线于点E,直线CF交EN于点F,且∠ECF=∠E.(1)证明CF是⊙O的切线;
(2)设⊙O的半径为1,且AC=CE,求MO的长.