游客
题文

定义:三边长和面积都是整数的三角形称为“整数三角形”.数学兴趣小组的同学从32根等长的火柴棒(每根长度记为1个单位)中取出若干根,首尾依次相接组成三角形,进行探究活动.

⑴ 小亮用12根火柴棒,摆成(如右)示意图所示的“整数三角形”;
⑵ 小颖用小亮的方法分别用24根和30根火柴棒摆出直角“整数三角形”;
⑶ 小辉是一个爱动脑筋,喜欢创新的学生,他受到小亮、小颖的启发,分别摆出三个不同的等腰“整数三角形”.
请你画出小颖和小辉摆出的“整数三角形”的示意图.
(友情提示:在所画的示意图中每边须标出所需火柴棒根数.)

科目 数学   题型 解答题   难度 中等
知识点: 三角形的五心
登录免费查看答案和解析
相关试题

先化简,再求值:,其中a=

解不等式组,并写出该不等式组的最大整数解.

如图1,在等腰△ABC中,底边BC=8,高AD=2,一动点Q从B点出发,以每秒1个单位的速度沿BC向右运动,到达D点停止;另一动点P从距离B点1个单位的位置出发,以相同的速度沿BC向右运动,到达DC中点停止;已知P、Q同时出发,以PQ为边作正方形PQMN,使正方形PQMN和△ABC在BC的同侧,设运动的时间为t秒(t≥0).
(1)当点N落在AB边上时,t的值为,当点N落在AC边上时,t的值为
(2)设正方形PQMN与△ABC重叠部分面积为S,求出当重叠部分为五边形时S与t的函数关系式以及t的取值范围;
(3)(本小题选做题,做对得5分,但全卷不超过150分)
如图2,分别取AB、AC的中点E、F,连接ED、FD,当点P、Q开始运动时,点G从BE中点出发,以每秒个单位的速度沿折线BE-ED-DF向F点运动,到达F点停止运动.请问在点P的整个运动过程中,点G可能与PN边的中点重合吗?如果可能,请直接写出t的值或取值范围;若不可能,请说明理由.

如图所示,已知二次函数经过、C三点,点是抛物线与直线的一个交点.
(1)求二次函数关系式和点C的坐标;
(2)对于动点,求的最大值;
(3)若动点M在直线上方的抛物线运动,过点M做x轴的垂线交x轴于点F,如果直线AP把线段MF分成1:2的两部分,求点M的坐标。

如图,⊙M与x轴相切于点C,与y轴的一个交点为A。
(1)求证:AC平分∠OAM;
(2)如果⊙M的半径等于4,∠ACO=300,求AM所在直线的解析式.

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号