游客
题文

若函数处取得极值,
(1)求的值;
(2)求上的最大值和最小值.

科目 数学   题型 解答题   难度 容易
知识点: 组合几何
登录免费查看答案和解析
相关试题

某广告公司设计一个凸八边形的商标,它的中间是一个正方形,外面是四个腰长为,顶角为的等腰三角形.
(1)若角时,求该八边形的面积;
(2)写出的取值范围,当取何值时该八边形的面积最大,并求出最大面积.

已知函数.
(1)已知区间是不等式的解集的子集,求的取值范围;
(2)已知函数,在函数图像上任取两点,若存在使得恒成立,求的最大值.

已知中心在原点,焦点在轴上的椭圆的离心率为,椭圆上异于长轴顶点的任意点与左右两焦点构成的三角形中面积的最大值为.
(1)求椭圆的标准方程;
(2)已知点,连接与椭圆的另一交点记为,若与椭圆相切时不重合,连接与椭圆的另一交点记为,求的取值范围.

甲、乙两容器中分别盛有两种浓度的某种溶液,从甲容器中取出溶液,将其倒入乙容器中搅匀,再从乙容器中取出溶液,将其倒入甲容器中搅匀,这称为是一次调和,已知第一次调和后,甲、乙两种溶液的浓度分别记为:,第次调和后的甲、乙两种溶液的浓度分别记为:.
(1)请用分别表示
(2)问经过多少次调和后,甲乙两容器中溶液的浓度之差小于.

如图所示,空间中有一直角三角形为直角,,现以其中一直角边为轴,按逆时针方向旋转后,将点所在的位置记为,再按逆时针方向继续旋转后,点所在的位置记为.
(1)连接,取的中点为,求证:面
(2)求与平面所成的角的正弦值.

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号