如图,在平面直角坐标系中,△AOB是直角三角形,∠AOB=90°,边AB与y轴交于点C.
(1)若∠A=∠AOC,试说明:∠B=∠BOC;
(2)延长AB交x轴于点E,过O作OD⊥AB,若∠DOB=∠EOB,∠A=∠E,求∠A的度数;
(3)如图,OF平分∠AOM,∠BCO的平分线交FO的延长线于点P,∠A=40°,当△ABO绕O点旋转时(边AB与y轴正半轴始终相交于点C),问∠P的度数是否发生改变?若不变,求其度数;若改变,请说明理由.
(本题10分)某服装厂现有A种布料70m,B种布料52m,现计划用这两种布料生产M, N两种型号的时装80套,已知做一套M型号的时装需要A种布料0.6m,B种布料0.9m,可获利45元,做一套N型号的时装需要A种布料1.1m,B种布料0.4m,可获利50元,若设生产N型号的时装套数为x,用这批布料生产这两种型号的时装所获的总利润为y元。(1)求y与x的函数关系式,并求出自变量x的取值范围。
(2)该服装厂在生产这批时装中,当生产N型号的时装多少套时,所获利润最大?最大利润是多少?
(本题10分)某电信公司给顾客提供了两种手机上网计费方式:
方式A以每分钟0.1元的价格按上网时间计费;
方式B除收月基费20元外,再以每分钟0.06元的价格按上网时间计费,假设顾客甲一个月手机上网的时间共有x分钟,上网费用为y元。
(1)分别写出顾客甲按A,B两种方式计费的上网费y元与上网时间x分钟之间的函数关系式。
(2)如何
选择计费方式能使甲上网费更合算。
(本题8分)一个实验室在0:00—2:00保持20℃的恒温,在2:00—4:00匀速升温,每小时升高5℃,写出时间t(单位:时)与实验室温度T(单位:℃)之间的函数解析式,并画出图象。
(本题8分)已知某人开车出门,下图是他离家的距离S(千米)与出门时间t(小时)的函数图象,请根据题意求出他出门3个小时时与家的距离。
(本题8分)已知y与x+2成正比例,且x=1时,y=-6。求y与x之间的函数关系式