已知:在四边形ABCD中,AC = BD,AC与BD交于点O,∠DOC = 60°.
(1)当四边形ABCD是平行四边形时(如图1),证明AB + CD = AC;
(2)当四边形ABCD是梯形时(如图2),AB∥CD,线段AB、CD和线段AC之间的数量关系是_____________________________;
(3)如图3,四边形ABCD中,AB与CD不平行,结论AB + CD = AC是否仍然成立?如果成立,请给予证明;如果不成立,请说明理由.
如图,AB∥CD,点E,F分别在AB,CD上,连接EF,∠AEF、∠CFE的平分线交于点G,∠BEF、∠DFE的平分线交于点H.
(1)求证:四边形EGFH是矩形;
(2)小明在完成(1)的证明后继续进行了探索,过G作MN∥EF,分别交AB,CD于点M,N,过H作PQ∥EF,分别交AB,CD于点P,Q,得到四边形MNQP,此时,他猜想四边形MNQP是菱形,请在下列框中补全他的证明思路.
已知如图,在平面直角坐标系中,直线
与
轴、
轴分别交于A,B两点,P是直线AB上一动点,⊙
的半径为1.
(1)判断原点O与⊙的位置关系,并说明理由;
(2)当⊙过点B时,求⊙
被
轴所截得的劣弧的长;
(3)当⊙与
轴相切时,求出切点的坐标.
如图,在△ABC中,∠CAB=90°,∠CBA=50°,以AB为直径作⊙O交BC于点D,点E在边AC上,且满足ED=EA.
(1)求∠DOA的度数;(2)求证:直线ED与⊙O相切.
已知:平面直角坐标系中,四边形OABC的顶点分别为O(0,0)、A(5,0)、B(m,2)、C(m-5,2).
(1)问:是否存在这样的m,使得在边BC上总存在点P,使∠OPA=90º?若存在,求出m的取值范围;若不存在,请说明理由.
(2)当∠AOC与∠OAB的平分线的交点Q在边BC上时,求m的值.
已知:如图,AB为⊙O的直径,点C、D在⊙O上,且BC=6cm,AC=8cm,∠ABD=45º.(1)求BD的长;(2)求图中阴影部分的面积.