小明和小亮进行赛跑训练,他们选择了一个土坡,按同一路线同时出发,从坡底跑到坡顶再原路返回坡底.他们俩上坡的平均速度不同,下坡的平均速度则是各自上坡平均速度的1.5倍.设两人出发x min后距出发点的距离为y m.图中折线表示小明在整个训练中y与x的函数关系,其中A点在x轴上,M点坐标为(2,0).
(1)求小明上、下坡的速度及A点的坐标;
(2)小亮上坡平均速度是小明上坡平均速度的一半,那么两人出发后多长时间第一次相遇?
如图①,直线AB的解析式为(
)与x轴、y轴分别交于A、B两点,∠ABO=60°.经过A、O两点的⊙O1与x轴的负半轴交于点C,与直线AB切于点A.
求C点的坐标;
如图②,过
作直线EF∥y轴,在直线EF上是否存在一点D,使得△DAB的周长最短,若存在,求出D点坐标,不存在,说明理由;
在⑵的条件下,连接
与⊙
交于点G,点P为劣弧G F上一个动点,连接GP与EF的延长线交于H点,连接EP与OG交于I点,当P在劣弧G F运动时(不与G、F两点重合),
的值是否发生变化,若不变,求其值,若发
生
变化,求出其值的变化范围.
如图,点A,B在直线MN上,AB=11厘米,⊙A,⊙B的半径均为1厘米.⊙A以每秒2厘米的速度自左向右运动,与此同时,⊙B的半径也不断增大,其半径r(厘米)与时间t(秒)之间的关系式为r=1+t(t≥0). 试写出点A,B之间的距离d(厘米)与时间t(秒)之间的函数表达式;
问点A出发后多少秒两圆相切?
)已知关于的一元二次方程
有两个实数根
和
.
求实数
的取值范围;
当
时,求
的值.
已知的三个顶点的坐标分别为
、
、
.
请直接写出点
关于
轴对称的点A
的坐标;
将
绕坐标原点
逆时针旋转90°.画出图形,直接写出点
的对应点B
的坐标;
请直接写出:以
为顶点的平行四边形的第四个顶点
的坐标.
如图,抛物线与x轴交于A(-1,0)、B(3,0)两点,与y轴交于点C(0,-3),设抛物线的顶点为D求该抛物线的解析式与顶点D的坐标
以B、C、D为顶点的三角形是直角三角形吗?为什么?
探究
轴上是否存在点P,使得以P、A、C为顶点的三角形与△BCD相似?若存在,直接写出点P的坐标;若不存在,请说明理由