如图,Rt△ABC中,∠C= Rt∠,AC=BC=2,E,F分别为AC,AB的中点,连结EF。
现将一把直角尺放在给出的图形上,使直角顶点P在线段EF(包括端点)上滑动,直角的
一边始终经过点C,另一边与BF相交于G,连结AP。
(1)求证:PC=PA=PG;
(2)设EP=,四边形BCPG的面积为
,求
与
之间的函数解析式,现有三个数
,
,
试通过计算说明哪几个数符合
值的要求,并求出符合
值时的
的值。
(3)当直角顶点P滑动到点F时,再将直角尺绕点F顺时针旋转,两直角边分别交AC,BC于点M,N,连结MN。当旋转到使时,求△APM的周长。
如图,AB是⊙O直径,D为⊙O上一点,AT平分∠BAD交⊙O于点T,过T作AD的垂线交AD的延长线于点C.
(1)求证:CT为⊙O的切线;
(2)若⊙O半径为2,CT=,求AD的长.
某校一课外活动小组为了解学生最喜欢的球类运动情况,随机抽查本校九年级的200名学生,调查的结果如图所示.请根据该扇形统计图解答以下问题:
(1)求图中的x的值;
(2)求最喜欢乒乓球运动的学生人数;
(3)若由3名最喜欢篮球运动的学生,1名最喜欢乒乓球运动的学生,1名最喜欢足球运动的学生组队外出参加一次联谊活动.欲从中选出2人担任组长(不分正副),列出所有可能情况,并求2人均是最喜欢篮球运动的学生的概率.
如图,在△ABC中,D、E分别是AB、AC的中点,BE=2DE,延长DE到点F,使得EF=BE,连接CF.
(1)求证:四边形BCFE是菱形;
(2)若CE=4,∠BCF=120°,求菱形BCFE的面积.
已知:如图,在平面直角坐标系xOy中,直线AB与x轴交于点A(﹣2,0),与反比例函数在第一象限内的图象的交于点B(2,n),连接BO,若S△AOB=4.
(1)求该反比例函数的解析式和直线AB的解析式;
(2)若直线AB与y轴的交点为C,求△OCB的面积.
某市为进一步缓解交通拥堵现象,决定修建一条从市中心到飞机场的轻轨铁路.实际施工时,每月的工效比原计划提高了20%,结果提前5个月完成这一工程.求原计划完成这一工程的时间是多少月?